Supporting Information

Title: All-Weather Li/LiV₂(PO₄)₃ Primary Battery with Improved Shelf-life: Based on the In-situ Modification of Cathode/Electrolyte Interface

Di Ma,‡^a Zihan Song,‡^{ab} Hongzhang Zhang,*^a Arshad Hussain,^{ab} Kai Feng,^c Huamin Zhang ^a and Xianfeng Li *^a

[†]Electronic Supplementary Information (ESI) available. See DOI:

‡ The first two authors contribute equally.

^{a.} Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023,

China. E-mail: zhanghz@dicp.ac.cn; lixianfeng@dicp.ac.cn

^{b.} University of Chinese Academy of Sciences, Beijing 100049, China

^c Shandong Collaborative Innovation Center of Light Hydrocarbon Transformation and Utilization, College of Chemistry & Engineering,

Yantai University, Yantai, 264005, China

Figure S1. FT-IR spectra of LiV₂(PO₄)₃ cathodes in Li/LiV₂(PO₄)₃ primary batteries with LPE-EC, LPE-PC and LPE-PC-LiBOB electrolytes before and after one-month storage.

Figure S2. FT-IR spectrum of (a) LiBOB and (b) different concentrations LiBOB in PC/DEC

Figure S3. XPS spectrums of Li₃V₂(PO₄)₃ cathodes in Li/LiV₂(PO₄)₃ primary batteries with LPE-PC and LPE-PC-LiBOB electrolytes compared with pristine cathode