Supplementary Information

Efficacious multifunction codoping strategy on the room-temperature solution-processed hole transport layer for realizing high-performance perovskite solar cells

Dan Ouyang, Jiawei Zheng, Zhanfeng Huang, Lu Zhu, and Wallace C. H. Choy*

Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China E-mail: chchoy@eee.hku.hk

Fig. S1 TEM image of as-synthesized (a) $(Li,Cu):NiO_x$ NPs and (b) pristine NiO_x and. Size distribution of (c) $(Li, Cu):NiO_x$ and (d) pristine NiO_x NPs.

Fig. S2 High-resolution XPS spectra of (a) Ni $2p_{3/2}$, (b) Cu $2p_{3/2}$ and (c) Li 1s elements for NiO_x and (Li,Cu):NiO_x NPs.

Fig. S3 SEM images of the perovskite film on (a) (Li,Cu):NiO_x, and (b) NiO_x films on ITO glass. Inserting is contact angle images of (Li,Cu):NiO_x, and NiO_x films, respectively. Size distribution of perovskite crystals on (c) (Li,Cu):NiO_x and (d) pristine NiO_x NPs, respectively.

Fig. S4 Transmittance spectra of pristine NiO_x , Li: NiO_x , (Li,Cu): NiO_x , and Cu: NiO_x films on ITO glass.

Fig. S5 I-V conducting curves of pristine NiO_x, Li:NiO_x, (Li,Cu):NiO_x, and Cu:NiO_x films measured from the c-AFM mode.

Fig. S6 (a) *J-V* characteristics of the best NiO_x based PSCs extracted from forward and reverse sweeping. (b) Steady photocurrent (red) and PCE (blue) under 1 Sun illumination of the best NiO_x based PSCs.

Fig. S7 PCE histogram of 30 pristine NiO_x and $(Li, Cu):NiO_x$ based PSC devices.

Fig. S8 Work function of (Li, Cu):NiO_x HTL from Kelven Probe.

Fig. S9 The dark J-V curves of the best-inverted PSCs based on pristine NiO_x and (Li,Cu):NiO_x.

Fig. S10 (a) Photograph of a typical flexible PSC. (b) J-V characterization of $(Li,Cu):NiO_x$ HTL based flexible device. (c) The efficiency of reported NiO_x based flexible devices.

Device Architecture	V _{oc} (V)	J _{sc} (mA cm⁻²)	FF	PCE (%)	Method	Ref.
FTO/NiO _x /Cs _{0.05} (MA _{0.17} FA _{0.83}) _{0.95} Pb(I _{0.9} Br _{0.1}) ₃ /PCBM/TiOx/Ag	1.10	23.0	0.81	20.65	NPs	1
ITO/NiOx/MA _{1-y} FA _y PbI _{3-x} Cl _x /PCBM/BCP/Ag	1.12	23.7	0.76	20.2	Combustion	2
ITO/NiOx/MAPbI ₃ /C ₆₀ /SnO ₂ /Ag	1.12	21.8	0.77	18.8	Sol-gel	3
ITO/NiOx/Cs _{0.05} (MA _{0.17} FA _{0.83}) _{0.95} Pb(I _{0.9} Br _{0.1}) ₃ /P CBM/ZnO/AI	1.02	22.2	0.82	18.6	NPs	4
ITO/NiOx/MAPbl ₃ /PCBM/Ti(Nb)Ox/Ag	1.07	21.9	0.79	18.5	NPs	5
FTO/NiOx/MAPbl ₃ /PCBM/BCP/Ag	1.00	22.9	0.80	18.2	Sol-gel	6
ITO/NiOx/MAPbl ₃ /C60/Bis-C ₆₀ /Ag	1.03	21.8	0.78	17.7	NPs	7
ITO/NiOx/MAPbI ₃ /PCBM/Bis-C ₆₀ /Ag	1.10	21.7	0.75	17.6	Sol-gel	8
ITO/NiOx/MAPbl ₃ /PCBM/BCP/Ag	1.02	21.8	0.79	17.6	Spray pyrolysis	9
ITO/PLD-NiOx/MAPbl ₃ /PCBM/LiF/Ag	1.06	20.2	0.81	17.3	PLD	10
ITO/NiOx/MAPbI ₃ /PCBM/Ag	1.04	22.5	0.72	16.9	Electrodeposite d	11
ITO/NiOx/MAPbl ₃ /PCBM/Ag	1.07	20.6	0.75	16.5	NPs	12
ITO/NiOx/MAPbl₃/PCBM/Ag	1.04	21.9	0.72	16.4	ALD	13
ITO/NiOx/MAPbl ₃ /PCBM/BCP/Ag	0.98	19.7	0.64	12.4	Sputtering	14
ITO/Cu:NiO _x /MAPbI ₃ /PCBM/C ₆₀ /Ag	1.12	22.2	0.81	20.1	NPs	15
ITO/Zn:NiO _x /MAPbI ₃ /PCBM/C ₆₀ /Ag	1.10	22.8	0.78	19.6	Sol-gel	16
FTO/Sr:NiOx/MAPbI ₃ /PCBM/BCP/Ag	1.14	22.7	0.76	19.5	Sol-gel	17
FTO/Cs:NiO _x /MAPbI ₃ /PCBM/Zracac/Ag	1.12	21.8	0.79	19.4	Sol-gel	18
FTO/Ca:NiOx/MAPbI ₃ /PCBM/BCP/Ag	1.13	22.3	0.74	18.7	Sol-gel	17
FTO/Mg:NiOx/MAPbl ₃ /PCBM/BCP/Ag	1.10	22.4	0.75	18.3	Sol-gel	17
ITO/K:NiO _x /MAPbI ₃ /PCBM:C ₆₀ /BCP/Ag	1.01	22.8	0.78	18.1	Sol-gel	19
FTO/Li:NiO _x /MAPbI ₃ /PCBM/Al	1.03	19.4	0.72	14.2	Sol-gel	20
ITO/Cu:NiOx/MAPbI ₃ /C ₆₀ /Bis-C ₆₀ /Ag	1.05	22.2	0.76	17.7	Combustion	21
ITO/Ag:NiO _x /MAPbI ₃ /PCBM/C ₆₀ /Ag	1.09	21.1	0.78	17.3	Sol-gel	22
ITO/Cs:NiO _x /MAPbI ₃ /PCBM/C ₆₀ /Au	1.03	21.4	0.78	17.2	Sol-gel	23
ITO/Rb:NiOx/MAPbl ₃ /PCBM/BCP/Ag	1.05	21.8	0.75	17.2	Sol-gel	24
ITO/Cu:NiOx/MAPbI ₃ /C ₆₀ /Bis-C ₆₀ /Ag	1.11	19.1	0.72	15.4	Sol-gel	25
FTO/La:NiOx/MAPbl ₃ /PCBM/BCP/Ag	1.03	20.7	0.71	15.3	Sol-gel	26
ITO/Co:NiOx/MAPbl ₃ /PCBM/BCP/Ag	1.06	17.3	0.79	14.5	NPs	27
ITO/Li,Ag:NiOx/MAPbI ₃ /PCBM/BCP/Ag	1.13	21.3	0.80	19.2	Sol-gel, 300 °C	28
FTO/Li _{0.05} Mg _{0.15} Ni _{0.8} O _x /Psk/Ti(Nb)O _x /Ag	1.12	22.7	0.77	19.6	Spray pyrolysis, 500 °C	29
ITO/Li,Pb:NiOx/MAPbI ₃ /PCBM/BCP/Ag	1.01	21.3	0.79	17.4	Sol-gel, 450 °C	30
ITO/Li,Cu:NiOx/MAPbl₃/PCBM/Ag	0.96	20.8	0.72	14.5	Sol-gel, 500 °C	31
ITO/(Li,Cu):NiO _x /MAPbI ₃₋ _x Cl _x /PCBM:C ₆₀ /Zracac/Ag	1.11	23.1	0.81	20.8	NPs, 25 °C	this wor k

Table S1 Performance of the reported planar PSCs based on NiO_x and doped NiO_x film.

Material	WF (eV)	ΔE _F (eV)
NiO _x	4.99±0.01	0
Li:NiO _x	5.07±0.0	0.08
(Li, Cu):NiO _x	5.12±0.0	0.13
Cu:NiO _x	5.02±0.0	0.03

Table S2 The WF variation of pristine NiO_x and doped NiO_x film characterized by Kelvin-Probe measurements. ΔEF is defined as the energy level offsets of the doped film and pristine film.

Samples	V _{oc} (V)	J _{sc} (mA cm⁻²)	FF	PCE (%)
RT	1.08	22.61	0.78	19.01(20.83)
100 °C	1.05	21.88	0.80	18.36(18.63)
150 °C	1.04	21.96	0.80	18.30(18.52)
200 °C	1.04	21.95	0.81	18.49(18.67)
250 °C	1.04	22.12	0.81	18.64(19.00)
300 °C	1.02	21.99	0.81	17.99(18.60)

Table S3 Summary of device performance with $(Li,Cu):NiO_x$ HTL treated at varying temperatures. The best PCEs are shown in brackets.

Doping element	Scan direction	J _{sc} (mA cm ⁻²)	V _{oc} (V)	FF	PCE (%)
N/A	Forward	22.02	1.09	0.75	17.91
	Reverse	21.45	1.07	0.73	16.75
Li	Forward	22.69	1.08	0.71	17.49
	Reverse	22.46	1.07	0.71	17.10
(Li <i>,</i> Cu)	Forward	23.07	1.09	0.80	20.08
	Reverse	22.84	1.10	0.80	20.07
Cu	Forward	22.54	1.05	0.75	17.76
	Reverse	21.67	1.03	0.66	14.89

Table S4 Devices performance based on NiO_x HTL with different doping elements.

Table S5 Devices performance based on (Li,Cu):NiO_x HTL with different doping concentrations.

concentrations						
Total doping	Ratio	Scan	J _{SC}	Voc	FF	PCE
concentration	of	direction	(mA cm⁻²)	(∨)		(%)
(%)	Li/Cu	unection				
0	0	Forward	22.02	1.09	0.75	17.91
		Reverse	21.45	1.07	0.73	16.75
5	2/1	Forward	23.07	1.09	0.80	20.08
		Reverse	22.84	1.10	0.80	20.07
10	2/1	Forward	22.23	1.05	0.74	17.37
		Reverse	21.84	1.03	0.71	16.14
20	2/1	Forward	16.55	1.01	0.72	12.00
		Reverse	15.58	0.99	0.60	9.19

Reference

- 1 Y. Zhao, H. Zhang, X. Ren, H. L. Zhu, Z. Huang, F. Ye, D. Ouyang, K. W. Cheah, A. K. Y. Jen and W. C. H. Choy, *ACS Energy Lett.*, 2018, **3**, 2891-2898.
- 2 Z. Liu, J. Chang, Z. Lin, L. Zhou, Z. Yang, D. Chen, C. Zhang, S. F. Liu and Y. Hao, *Adv. Energy Mater.*, 2018, **8**, 1703432.
- 3 Z. Zhu, Y. Bai, X. Liu, C. C. Chueh, S. Yang and A. K. Jen, *Adv. Mater.*, 2016, **28**, 6478-6484.
- 4 M. Najafi, F. Di Giacomo, D. Zhang, S. Shanmugam, A. Senes, W. Verhees, A. Hadipour, Y. Galagan, T. Aernouts, S. Veenstra and R. Andriessen, *Small*, 2018, **14**, e1702775.
- 5 J. He, E. Bi, W. Tang, Y. Wang, Z. Zhou, X. Yang, H. Chen and L. Han, *Solar RRL*, 2018, **2**, 1800004.
- 6 X. C. Li Juan Tang, Tian Yu Wen, Shuang Yang, Jun Jie Zhao, Hong Wei Qiao, Yu Hou, Hua Gui Yang, *Chem. Eur. J.*, 2018, **24**, 2845-2849.
- 7 H. Zhang, J. Cheng, F. Lin, H. He, J. Mao, K. S. Wong, A. K. Jen and W. C. Choy, *ACS Nano*, 2016, **10**, 1503-1511.
- 8 S. Xiao, Y. Bai, X. Meng, T. Zhang, H. Chen, X. Zheng, C. Hu, Y. Qu and S. Yang, *Adv. Funct. Mater.*, 2017, **27**, 1604944.
- 9 F. Ye, H. Chen, F. Xie, W. Tang, M. Yin, J. He, E. Bi, Y. Wang, X. Yang and L. Han, *Energy Environ. Sci.*, 2016, **9**, 2295-2301.

- 10 J. H. Park, J. Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, H. W. Shin, T. K. Ahn, J. H. Noh, S. C. Yoon, C. S. Hwang and S. I. Seok, *Adv. Mater.*, 2015, **27**, 4013-4019.
- 11 I. J. Park, G. Kang, A. P. Min, S. K. Ju and Y. K. Jin, *Chemsuschem*, 2017, **10**.
- 12 X. Yin, P. Chen, M. Que, Y. Xing, W. Que, C. Niu and J. Shao, *ACS Nano*, 2016, **10**, 3630-3636.
- 13 S. Seo, I. J. Park, M. Kim, S. Lee, C. Bae, H. S. Jung, N. G. Park, J. Y. Kim and H. Shin, *Nanoscale*, 2016, **8**, 11403-11412.
- 14 H. Lee, Y. T. Huang, M. W. Horn and S. P. Feng, *Sci. Rep.*, 2018, **8**, 5590.
- 15 W. Chen, Y. Wu, J. Fan, A. B. Djurišić, F. Liu, H. W. Tam, A. Ng, C. Surya, W. K. Chan, D. Wang and Z.-B. He, *Adv. Energy Mater.*, 2018, **8**, 1703519.
- 16 X. Wan, Y. Jiang, Z. Qiu, H. Zhang, X. Zhu, I. Sikandar, X. Liu, X. Chen and B. Cao, *ACS Appl. Energy Mater.*, 2018, **1**, 3947-3954.
- 17 B. Ge, H. W. Qiao, Z. Q. Lin, Z. R. Zhou, A. P. Chen, S. Yang, Y. Hou and H. G. Yang, *Solar RRL*, 2019, **3**, 1900192.
- 18 W. Chen, F.-Z. Liu, X.-Y. Feng, A. B. Djurišić, W. K. Chan and Z.-B. He, *Adv. Energy Mater.*, 2017, **7**, 1700722.
- X. Yin, J. Han, Y. Zhou, Y. Gu, M. Tai, H. Nan, Y. Zhou, J. Li and H. Lin, *J. Mater. Chem. A*, 2019, 7, 5666-5676.
- 20 Z. Saki, K. Sveinbjornsson, G. Boschloo and N. Taghavinia, *Chemphyschem*, 2019, **20**, 3322-3327.
- 21 J. W. Jung, C. C. Chueh and A. K. Jen, *Adv. Mater.*, 2015, **27**, 7874-7880.
- J. Zheng, L. Hu, J. S. Yun, M. Zhang, C. F. J. Lau, J. Bing, X. Deng, Q. Ma, Y. Cho, W. Fu, C. Chen,
 M. A. Green, S. Huang and A. W. Y. Ho-Baillie, ACS Appl. Energy Mater., 2018, 1, 561-570.
- 23 H. S. Kim, J. Y. Seo, H. Xie, M. Lira-Cantu, S. M. Zakeeruddin, M. Gratzel and A. Hagfeldt, ACS Omega, 2017, **2**, 9074-9079.
- 24 Q. Fu, S. Xiao, X. Tang and T. Hu, Org. Electron., 2019, 69, 34-41.
- 25 J. H. Kim, P. W. Liang, S. T. Williams, N. Cho, C. C. Chueh, M. S. Glaz, D. S. Ginger and A. K. Jen, *Adv. Mater.*, 2015, **27**, 695-701.
- 26 S. Teo, Z. Guo, Z. Xu, C. Zhang, Y. Kamata, S. Hayase and T. Ma, *ChemSusChem*, 2019, **12**, 518-526.
- 27 R. Kaneko, T. H. Chowdhury, G. Wu, M. E. Kayesh, S. Kazaoui, K. Sugawa, J.-J. Lee, T. Noda, A. Islam and J. Otsuki, *Solar Energy*, 2019, **181**, 243-250.
- 28 X. Xia, Y. Jiang, Q. Wan, X. Wang, L. Wang and F. Li, *ACS Appl. Mater. Interfaces*, 2018, **10**, 44501-44510.
- 29 W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Gratzel and L. Han, *Science*, 2015, **350**, 944-948.
- 30 D. Hou, J. Zhang, X. Gan, H. Yuan, L. Yu, C. Lu, H. Sun, Z. Hu and Y. Zhu, *J. Colloid Interface Sci.*, 2020, **559**, 29-38.
- 31 M. H. Liu, Z. J. Zhou, P. P. Zhang, Q. W. Tian, W. H. Zhou, D. X. Kou and S. X. Wu, *Opt. Express*, 2016, **24**, A1349-A1359.