Supporting Information

Enhancing Cycling Stability of Tungsten Oxide Supercapacitor Electrodes via a Boron Cluster-Based Molecular Cross-Linking Approach

Dahee Jung,^{*‡a,b} Mit Muni,^{‡a} Gustavo Marin,^a Roshini Ramachandran,^a Maher F. El-Kady,^{a,b}

Tanya Balandin,^a Richard B. Kaner,^{*a,b,c} Alexander M. Spokoyny^{*a,b}

^aDepartment of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles

E. Young Drive East, Los Angeles, CA 90095, USA.

^bCalifornia NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA.

^cDepartment of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA.

Figure S1. Thermogravimetric analysis (TGA) of Cs₂[B₁₂(OH)₁₂].

Figure S2. The optical images of synthesis of material 1.

Figure S3. The ¹¹B solution NMR of the supernatant liquid after the synthesis of material **1**. (Inset) The ¹¹B NMR spectra of the $[N^nBu_4]_2[B_{12}(OH)_{12}]$ in acetonitrile-*d*₃. The colorless solution further confirms the absence of radical $[B_{12}(OH)_{12}]^{1-}$ species.¹

Figure S4. Thermogravimetric analysis (TGA) of material 1.

Figure S5. Energy dispersive X-ray spectroscopy (EDS) result of material **1**. (Inset) The elemental composition of material **1**. Please note that EDS is a semi-quantitative technique and these numbers do not necessarily reflect the actual elemental composition in the bulk material.

Figure S6. FT-IR spectra of material **1** (top) and $[N^nBu_4]_2[B_{12}(OH)_{12}]$ (bottom). *The peak at ~3250 cm⁻¹ can likely arise from the surface bound water or hydroxyl groups.^{2,3}

Figure S7. X-ray photoelectron spectroscopy (XPS) of (a) the pristine cross-linking agent, $[N^{n}Bu_{4}]_{2}[B_{12}(OH)_{12}]$ and the salt $Cs_{2}[B_{12}(OH)_{12}]$ and (b) the annealed $[N^{n}Bu_{4}]_{2}[B_{12}(OH)_{12}]$ and the salt $Cs_{2}[B_{12}(OH)_{12}]$ clusters at 500 °C.

	C 1s	0 1s	W 4f	B 1 <i>s</i>
At %	23 %	51 %	5 %	21 %

Table S1. The elemental composition of material **1** at the surface from X-ray photoelectron spectroscopy (XPS) results.

Figure S8. Solid-state 1D ¹¹B MAS NMR of Cs₂[B₁₂(OH)₁₂]. *spinning side bands

Figure S9. Solid-state 1D ¹¹B MAS NMR of material **1**. *spinning side bands

Figure S10. The synthetic route to produce material **2**. $[N^nBu_4]^+$ represents a tetrabutylammonium ion. (b) PXRD and (c) TEM image of material **2**.

Figure S11. Thermogravimetric analysis (TGA) of material 2.

Figure S12. PXRD results of monoclinic WO₃ (top) and simulated monoclinic WO₃.⁴

Figure S13. SEM and TEM images of monoclinic WO₃.

Figure S14. Cyclic voltammogram (CV) of material 1 at different scan rates.

Figure S15. CV curves of material 2 at different scan rates.

Figure S16. CV curves of m-WO₃ at different scan rates.

Figure S17. BET surface area of material 1 and 2.

Figure S18. CV curves of material 1 and m-WO₃ for the ferri/ferrocyanide redox couple (left). The electron transfer rate constants for material 1 and m-WO₃.

References:

- 1. N. Van, I. Tiritiris, R. F. Winter, B. Sarkar, P. Singh, C. Duboc, A. Muñoz-Castro, R. Arratia-Pérez, W. Kaim and T. Schleid, *Chem. Eur. J.*, 2010, **16**, 11242–11245.
- 2. R. Ramachandran, D. Jung, N. A. Bernier, J. K. Logan, M. A. Waddington and A. M. Spokoyny, *Inorg. Chem.*, 2018, **57**, 8037–8041.
- 3. N. Sharma, M. Deepa, P. Varshney and S. A. Agnihotry, *Thin Solid Films*, 2001, 401, 45–51.
- 4. C. Chacón, M. Rodríguez-Pérez, G. Oskam and G. Rodríguez-Gattorno, J. Mater. Sci: Mater Electron, 2015, 26, 5526–5531.