Supporting Information

Keplerate-type polyoxometalate $\{Mo_{72}Fe_{30}\}$ nanoparticle anodes for high-energy lithium-ion batteries

Shao-Chu Huang,^a Chia-Ching Lin,^a Chi-Ting Hsu,^a Chun-Han Guo,^a Tsan-Yao Chen,^b Yen-Fa Liao,^c and Han-Yi Chen^a*

^a Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan

^b Department of Engineering and System Science, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan

^c National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30013, Taiwan

* Corresponding author: Prof. Han-Yi Chen (hanyi.chen@mx.nthu.edu.tw)

Table S1. Summary of POMs as anode materials for LIBs

Electrode	Current Density	1 st /2 nd Charge/Disch arge Capacity	Cycle Number (Retention %)	Ref.
H ₅ PMo ₁₀ V ₂ O ₄₀ /MOF ^{a)} /RGO	50 mA g^{-1}	2368/1300	100 th (~82.6)	1
EMI ^{b)} -Mo ₇₂ V ₃₀ @rGO	100 mA g^{-1}	2046/1200	100 th (~100)	2
Na ₃ [AlMo ₆ O ₂₄ H ₆]-EDAG ^{c)}	100 mA g^{-1}	1835/1180	100 th (~84.1)	3
${[Co_{3}O(CH_{3}CO_{2})_{6}(C_{5}H_{5}N)_{3}]^{+}}_{3}[PMo_{12}O_{40}]^{3-}/SWCNT^{d}$	100 mA g ⁻¹	1469/1118	100 th (~90.5)	4
[(Bu4N)2[M06O18-N-Ph ^{e)} -(0-CH3)2-p-SCN]	50 mA cm ⁻²	1678/1050	100 th (~85)	5
H ₂ [Cu ^{II} ₄ (Htrz) ₅ (H ₂ O) ₂][Mo ^{VI} ₄ Cu ^{II} ₄ O ₂₆] _{0.5} ·3H ₂ O	100 mA g ⁻¹	1893/ 1005	200 th (~69.7)	6
Py-Anderson ^{f)} -CNT	0.1 mA cm ⁻²	1899/990	100 th (~61.1)	7
(nBu ₄ N) ₃ (DMA)[(MnCl)V ₁₂ O ₃₂ Cl]/GQD ^{g)}	100 mA g ⁻¹	1645/985	100 th (~98.5)	8
(NH4)6P2M018O62/ GO-IL ^{h)}	100 mA g ⁻¹	1433/945	100 th (~102)	9
[PM012O40] ³⁻ /PANI ⁱ⁾ /MWNTs ^{j)}	50 mA g ⁻¹	1572/942	100 th (~106)	10
H5PM010V2O40/PDA ^{k)}	100 mA g^{-1}	activation/915	300 th (~93)	11
Na[Ag ₁₆ (Trz ^{l)})9(H ₂ O)4][P ₂ W ₁₈ O ₆₂]·H ₂ O	100 mA g^{-1}	1452/901	100 th (~63.2)	12
[Ag10(trz)4(H2O)2][HPW12O40]/SWNT	100 mA g^{-1}	2000/859	70 th (~93.1)	13
H ₃ [Ag ₂₇ (trz) ₁₆ (H ₂ O) ₆][SiW ₇ ^{VI} W ₅ ^V O ₄₀] ₂ ·5H ₂ O	50 mA g^{-1}	1356/832	100 th (~54.8)	14
$[Cu_{18}(trz)_{12}Cl_3(H_2O)_2][PW_{12}O_{40}]/SWNT^{[d]}-COOH$	100 mA g ⁻¹	1298/809	170 th (~97.1)	15
[PM08 ^V M04 ^{VI} O37(OH)3Zn4][TPT ^{m)}]5·2TPT·2H2O	50 mA g^{-1}	1322/800	200 th (~92.5)	16
$ \{ [Ni_6(OH)^{3-} \\ (H_2O)(en^{n})_3(PW_9O_{34})] [Ni_6(OH)_3(H_2O)_4(en)_3(PW_9O_{34})] (BDC^{o}) \\ 1.5] \} [Ni(en)(H_2O)_4] \cdot H_3O $	1.25 C	1421/780	500 th (~48.7)	17
Py–(Bu4N)4{(SiW11O39)[O(SiCH2CH2CH2NH– COOCH2C16H9)2]} /SWNTs	0.5 mA cm^{-2}	1570/707	100 th (~74)	18
Na7H2[PV14O42]	100 mA g ⁻¹	961/687	150 th (~80)	19
(Bu4N)4{(SiW11O39)[O(SiCH2CH2CH2NH2·HCl)2]}/CNT ^{c)}	0.5 mA cm^{-2}	1189/650	100 th (~92.3)	20
{M072Fe30}	100 mA g ⁻¹	1437/1150	100 th (92)	This work

^{a)}MOF: consists of Cu²⁺ and 1,3,5-benzenetricarboxylic acid (HKUST-1); ^{b)}EMI: 1-ethyl-3-methylimidazolium; ^{c)}EDAG: ethylenediamine-decorated reduced graphene oxide; ^{d)}SWCNT/SWNT: single-walled carbon nanotubes; ^{e)}Ph: phenols; ^{f)}Py-Anderson: [[N(n-C₄H₉)₄]₃[MnMo₆O₁₈-{(OCH₂)₃CNH-CH₂-C₁₆H₉}₂]]; ^{g)}GQD: graphene quantum dot; ^{h)}GO-IL: graphene oxide-ionic liquid; ⁱ⁾PANI: polyaniline; ^{j)}MWNT: multi-walled carbon nanotubes; ^{k)}PDA: polydopamine; ⁱ⁾Trz: 1,2,3 triazole; ^{m)}TPT: tris-(4-pyridyl) triazine; ⁿ⁾en: ethylenediamine; ^{o)}BDC: H2BDC = 1,4benzenedicarboxylic acid.

Fig. S1 SEM cross section image of {Mo₇₂Fe₃₀} electrode

Fig. S2 (a) Raman, (b) UV–Vis, and (c) TGA spectra of the {Mo₇₂Fe₃₀} powders.

Fig. S3 (a) FTIR spectrum, (b) XRD patterns ($\lambda = 0.154$ nm), (c) Raman, (d) UV–Vis, and (e) TGA spectra of the 110°C vacuum-dried **{Mo₇₂Fe₃₀}** powders.

Fig. S4 (a) SEM image, and EDS elemental mapping of the {Mo72Fe30} powder for (b) Mo and

(c) Fe.

Fig. S5 Nyquist plots of the $\{Mo_{72}Fe_{30}\}$ electrodes at (a) OCV and (b) 0.01 V (fully lithiation) at

the 1st, 2nd, and 5th cycles.

Fig. S6 Differential capacity (dQ/dV) plots of the galvanostatic charge/discharge curves, at a current density of 100 mA g^{-1} .

Fig. S7 (a) Mo and (b) Fe valencies vs. the first peak value, in the derivative of energy, for the reference materials.

 Table S2.
 R-factor of linear combination fitting for the {Mo72Fe30} powder

Element	Potential	R-factor	Element	Potential	R-factor
	OCV	0.022		OCV	0.023
	1L	0.002	-	1L	0.003
Мо			Fe		
	1D	0.018	-	1D	0.01
	2L	0.001	-	2L	0.008

OCV: open-circuit voltage; 1L: the first full lithiation, at 0.01 V; 1D: the first full delithiation, at

3 V; and 2L: the second lithiation, at 0.01 V. R-factor = $\frac{\sum((data-fit)^2)}{\sum(data^2)}$

Fig. S8 Corresponding Fourier Transform patterns of *ex situ* TEM images. (a) **{Mo₇₂Fe₃₀}** powder, (b) electrode at 1L, and (c) electrode at 1D.

Path	CN ^{a)}	σ² (Ų) ^{b)}	<i>R</i> (Å) ^{c)}	E₀ (eV)
Mo-O	3.36	0.0028	1.72	
Mo-O	1.58	0.0029	1.79	2.71
Mo-O	0.77	0.0034	2.07	-

Table S3. Mo K-edge EXAFS fitting parameters for the {Mo₇₂Fe₃₀} powder

^{a)}coordination number. ^{b)}Debye–Waller factors. ^{c)}Bond length. ^{d)}Energy shift. R-factor of the

fitting is 0.015. R-factor = $\frac{\sum_{i=1}^{N} [f(R_i)]^2}{\sum_{i=1}^{N} ([\text{Re}(\tilde{\chi}(R_i | data))]^2 + [\text{Im}(\tilde{\chi}(R_i | data))]^2)}$

Table S4. Fe K-edge EXAFS fitting parameters for the {Mo₇₂Fe₃₀} powder

Path	CN ^{a)}	σ² (Ų) ^{b)}	R (Å) ^{c)}	E₀ (eV)
Fe–O			1.95	
Fe–O	1.77	0.0029	1.98	-2.907
Fe–O			2.03	-

^{a)}coordination number. ^{b)}Debye–Waller factors. ^{c)}Bond length. ^{d)}Energy shift. R-factor of the

fitting is 0.004. R-factor = $\frac{\sum_{i=1}^{N} [f(R_i)]^2}{\sum_{i=1}^{N} ([\text{Re}(\tilde{\chi}(R_i | data))]^2 + [\text{Im}(\tilde{\chi}(R_i | data))]^2)}$

Fig. S9 (a) Mo K-edge (b) Fe K-edge Fast FT (FFT)–EXAFS and the real part of the FFT–EXAFS experimental data and fitting curves of the **{Mo₇₂Fe₃₀}** powder.

Fig. S10 *Ex-situ* Li 1s XPS spectrum of the **{Mo₇₂Fe₃₀}** pristine electrode, electrode at 1L, and electrode at 1D.

Fig. S11 In(I) vs. time in the (a) first discharge and (b) first charge processes of **{Mo₇₂Fe₃₀}**, as an anode for LIBs.

Fig. S12 CV plot of current vs. scan rate

References

- 1. H. Ying and W. Q. Han, *Advanced Science*, 2017, 4, 1700298.
- 2. W.-J. Liu, G. Yu, M. Zhang, R.-H. Li, L.-Z. Dong, H.-S. Zhao, Y.-J. Chen, Z.-F. Xin, S.-L. Li and Y.-Q. Lan, *Small Methods*, 2018, **2**, 1800154.
- 3. J. Xie, Y. Zhang, Y. Han and C. Li, ACS Nano, 2016, 10, 5304-5313.
- 4. B. Iqbal, X. Jia, H. Hu, L. He, W. Chen and Y.-F. Song, *Inorganic Chemistry Frontiers*, 2020, **7**, 1420-1427.
- 5. R. N. Nasim Khan, N. Mahmood, C. Lv, G. Sima, J. Zhang, J. Hao, Y. Hou and Y. Wei, *RSC Advances*, 2014, **4**, 7374-7379.
- 6. P. Zhu, X. Yang, X. Li, N. Sheng, H. Zhang, G. Zhang and J. Sha, *Dalton Transactions*, 2020, **49**, 79-88.
- 7. L. Huang, J. Hu, Y. Ji, C. Streb and Y.-F. Song, *Pyrene-Anderson-Modified CNTs as Anode Materials for Lithium-Ion Batteries*, 2015.
- 8. Y. Ji, J. Hu, J. Biskupek, U. Kaiser, Y.-F. Song and C. Streb, Chemistry A European

Journal, 2017, 23, 16637-16643.

- 9. J. Hu, H. Diao, W. Luo and Y.-F. Song, *Chemistry A European Journal*, 2017, **23**, 8729-8735.
- 10. J. Hu, F. Jia and Y.-F. Song, *Chemical Engineering Journal*, 2017, **326**, 273-280.
- Y.-H. Ding, J. Peng, S.-U. Khan and Y. Yuan, *Chemistry A European Journal*, 2017, 23, 10338-10343.
- 12. X.-Y. Yang, T. Wei, J.-S. Li, N. Sheng, P.-P. Zhu, J.-Q. Sha, T. Wang and Y.-Q. Lan, *Inorganic Chemistry*, 2017, **56**, 8311-8318.
- 13. J.-Q. Sha, X.-Y. Yang, Y. Chen, P.-P. Zhu, Y.-F. Song and J. Jiang, *ACS Applied Materials & Interfaces*, 2018, **10**, 16660-16665.
- 14. M.-T. Li, X.-Y. Yang, J.-S. Li, N. Sheng, G.-D. Liu, J.-Q. Sha and Y.-Q. Lan, *Inorganic Chemistry*, 2018, **57**, 3865-3872.
- 15. X. Li, K.-F. Zhou, Z.-B. Tong, X.-Y. Yang, C.-Y. Chen, X.-H. Shang and J.-Q. Sha, *Chemistry An Asian Journal*, 2019, **14**, 3424-3430.
- 16. Q. Huang, T. Wei, M. Zhang, L.-Z. Dong, A. M. Zhang, S.-L. Li, W.-J. Liu, J. Liu and Y.-Q. Lan, *Journal of Materials Chemistry A*, 2017, **5**, 8477-8483.
- 17. Y. Yue, Y. Li, Z. Bi, G. M. Veith, C. A. Bridges, B. Guo, J. Chen, D. R. Mullins, S. P. Surwade, S. M. Mahurin, H. Liu, M. P. Paranthaman and S. Dai, *Journal of Materials Chemistry A*, 2015, **3**, 22989-22995.
- 18. D. Ma, L. Liang, W. Chen, H. Liu and Y.-F. Song, *Advanced Functional Materials*, 2013, **23**, 6100-6105.
- 19. S.-C. Huang, C.-C. Lin, C.-W. Hu, Y.-F. Liao, T.-Y. Chen and H.-Y. Chen, *Journal of Power Sources*, 2019, **435**, 226702.
- 20. W. Chen, L. Huang, J. Hu, T. Li, F. Jia and Y.-F. Song, *Physical Chemistry Chemical Physics*, 2014, **16**, 19668-19673.