Porphyrin based metal-organic framework films: nucleation and growth

Zhenyu Zhou,^a Soumya Mukherjee,^a Julien Warnan,^a Weijin Li,^{*a} Suttipong Wannapaiboon,^b Shujin Hou,^c Katia Rodewald,^d Bernhard Rieger,^d Peter G. Weidler,^e Christof Wöll,^e Roland A. Fischer^{*a}

^aChair of Inorganic and Metal-organic Chemistry, Catalysis Research Center, Ernst-Otto-Fischer Straße 1 and Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching b. München, Germany

^bSynchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand

^cPhysics of Energy Conversion and Storage, Department of Physics, James-Franck-Straße 1 and Catalysis Research Center, Otto-Fischer Straße 1, 85748, Garching b. München, Germany

^dWacker-Chair of Macromolecular Chemistry, Catalysis Research Center, Ernst-Otto-Fischer Straße 1 and Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85747 Garching b. München, Germany

^eInstitut für Funktionelle Grenzflächen, IFG, Karlsruher Institut für Technologie (KIT), 76021 Karlsruhe, Germany

*Corresponding author: R. A. Fischer (<u>roland.fischer@tum.de</u>) and W.J. Li (<u>wj.li@tum.de</u>)

Contents

1.	Characterisation	S4
2.	Chemicals and materials	S4
3.	Ligand synthesis	S5
4.	Svnthesis of Zr ₆ O ₄ (OH) ₄ (OMc) ₁₂	S5
5.	Synthesis of PP-MOFs films	S5-S8
6.	Supporting Figures	59-523
••	Fig. S1 Structures of the building units	S9
	Fig. S2 GIXRD patterns of $Zn_2(ZnTCPP)$ films grown by VAC method on different	.,
	substrates.	
	Fig. S3 In-plane PXRD patterns of Zn ₂ (ZnTCPP) films fabricated by VAC, solvotherma	al,
	modular assembly and LPE methods	S10
	Fig. S4 ATR-IR spectra of TCPP ligand and Zn ₂ (ZnTCPP) films fabricated on -COOH	
	terminated gold substrates by different methods	S10
	Fig. S5 UV-Vis spectra of TCPP ligand and $Zn_2(ZnTCPP)$ films fabricated on –COOH	
	terminated gold substrates by different methods	S11
	Fig. S6 GIXRD patterns of Zn ₂ (ZnTCPP) film grown by VAC method on –COOH term	inated
	gold substrate without acetic acid as modulator.	
	Fig. S7 SEM images of $Zn_2(ZnTCPP)$ film grown by VAC method on –COOH terminat	ted gold
	substrate without acetic acid as modulator.	SII
	Fig. So GIARD patterns of $Zn_2(ZnTCPP)$ mini grown by VAC method on -COOH term	S12
	gold substrate without accur and DMF	ted gold
	substrate without acetic acid and DME	S12
	Fig S10 Cross-section SFM images of Zn ₂ (ZnTCPP) films grown by VAC method on -	-COOH
	terminated gold substrate with (a) 30 µL and (b) 60 µL of precursor solution	S12
	Fig. S11 Roughness profiles of Zn ₂ (ZnTCPP) films fabricated on –COOH terminated go	old
	substrates by (a) VAC, (b) solvothermal, (c) modular assembly and (d) LPE methods	S13
	Fig. S12 Different connectivities of Zr ₆ clusters in the structures of Zirconium-based	
	porphyrinic MOFs	S13
	Fig. S13 GIXRD patterns of PCN-222 films grown by VAC technique on different	
	functionalised substrates	S14
	Fig. S14 (a) Side-view scheme (<i>ab</i> plane) of PCN-222 film grown upon functionalised s	substrate
	along a axis ([100] direction); (b) the bc plane of PCN-222 film nucleated on the subs	strate
	surface.	
	Fig. SIS GIARD patterns of PCN-222 films grown on –COOH terminated gold substrate	S15
	Fig S16 SEM images of PCN-222 film grown on -COOH terminated gold substrate by	VAC
	method with ry at 437	S15
	Fig. S17 GIXRD patterns of PCN-222 films grown by VAC method on –COOH termin	ated
	gold substrate with low and high precursor concentrations	
	Fig. S18 GIXRD patterns of PCN-222 films grown on –COOH terminated gold substrat	tes by
	VAC method using different reaction time	Š16
	Fig. S19 GIXRD patterns of PCN-222 films grown on -COOH terminated gold substrat	tes by
	VAC method on different reaction temperatures	S16
	Fig. S20 ATR-IR spectra of CuTCPP ligand and PCN-222 films fabricated on -COOH	
	terminated gold substrates by different methods	S17
	Fig. S21 Cross-section SEM images of PCN-222 films grown by VAC method on -CO	OH
	terminated gold substrate.	S17
	Fig. S22 SEM images of PCN-222 film grown on silicon (a-b) and ITO (c-d) by VAC	

method	S18
Fig. S23 Roughness profiles of PCN-222 films fabricated on -COOH terminated gold	
substrates by (a) VAC, (b) solvothermal, (c) modular assembly and (d) LPE methods	sS18
Fig. S24 GIXRD patterns of PCN-224 films grown by VAC method on different function	ionalised
substrates	S18
Fig. S25 (a) Side-view scheme (ab plane) of PCN-224 film grown upon functionalised	substrate
along <i>a</i> axis ([200] direction); (b) the <i>bc</i> plane of PCN-224 film which nucleated on	the
substrate surface	S19
Fig. S26 GIXRD patterns of PCN-224 films grown on –COOH terminated gold substra	ites via
VAC method with different modulator to metal ratios (r_M)	
Fig. S27 GIXRD patterns of PCN-224 films grown on -COOH terminated gold substra	ites via
VAC method using different reaction time	520
Fig. 526 GIARD patterns of PCN-224 mins grown on -COOH terminated gold subsiti	
Fig S29 SEM images of PCN-224 film grown on -COOH terminated gold substrate vi	1520
method	S20
Fig. S30 Roughness profiles of (a) PCN-224 and (b) MOF-525 films fabricated on -CO	520 ЭОН
terminated gold substrates by VAC method	S21
Fig. S31 GIXRD patterns of MOF-525 films grown by VAC method on different funct	tionalised
substrates	S21
Fig. S32 (a) Side-view scheme of the MOF-525 film randomly grown upon functionali	sed
substrate; (b) the <i>ab</i> plane and (c) <i>bc</i> plane of MOF-525	S21
Fig. S33 GIXRD patterns of MOF-525 films grown on -COOH terminated gold substr	ates via
VAC method with different modulator to metal ratios (r _M)	S22
Fig. S34 GIXRD patterns of MOF-525 films grown on –COOH terminated gold substr	ates via
VAC method using different reaction times	S22
Fig. S35 SEM images of MOF-525 film grown on –COOH terminated gold substrate v	ia VAC
method	823
Fig. S36 Methanol sorption isotherms at ambient temperature (25 °C) of PCN-22	4 IIIm
Fig. S37 Mothanol sorption isotherms at ambient temperature (25 °C) of MOE 5	110525
fabricated by VAC method on the COOH terminated Au coated OCM substr	123 mm
Tableated by VAC method on the -coort terminated Au-coated QEW subsiti	
7. Supporting Tables	24-830
Table SI List of atomic coordinates for the simulated structure of $Zn_2(ZnTCPP)$ films	824
Table S2 Recipes for the fabrication of $Zn_2(ZnTCPP)$ films by VAC	
Table S3 Surface roughness of $Zn_2(ZnTCPP)$ films fabricated via different methods	S27
Table S4 Recipes for the fabrication of PCN-222 films by VACS	27-828
Table S5 Surface roughness of PCN-222 films fabricated via different methods	
Table S6 Recipes for the fabrication of PCN-224 films by VAC Table S6 Recipes for the fabrication of PCN-224 films by VAC	
Table S7 Recipes for the fabrication of MOF-525 films by VAC Table S7 Recipes for the fabrication of MOF-525 films by VAC	
Table S8 Surface roughness of PCN-224 and MOF-525 films fabricated by VAC	
8. Reference	S31

1. Characterisations

X-ray diffraction measurement: The crystalline phase and crystal orientation of the obtained MOF thin films were identified by powder X-ray diffraction (PXRD, X' Pert Pan Analytical instrument, Bragg-Brentano geometry, Cu Ka radiation, 2thera 2-25°, scan step size of 0.01°) and grazing incidence XRD (GIXRD, PANalytical Empyrean instrument, grazing incidence mode, room temperature, Cu-Ka radiation, a range of 2thera 5-25° for $Zn_2(ZnTCPP)$ and 2-15° for 3D PP-MOF, a step of 0.01313°, an accumulation time of 1.5 s per step); meanwhile, the in-plane XRD patterns of $Zn_2(ZnTCPP)$ thin films were measured with a Bruker D8 Discover with Cu K_{a1,2} radiation with an in-plane geometry, over a 2 θ range ~ 5 to 23° using a scan-time of 2 seconds per 0.025°.

Scanning electron microscopy (SEM) analysis: Top and cross-sectional view images were taken by using an environmental scanning electron microscope (ESEM, FEI ESEM Dual BeamTM Quanta 3D FEG) in order to investigate the surface morphology and surface coverage of the MOF films.

Infrared spectroscopy and ultraviolet-visible spectroscopy analysis: Attenuated total reflectance infrared (ATR-IR) spectra of samples were performed using a PerkinElmer instrument with an ATR sampling accessory. Ultraviolet–visible spectroscopy (UV-Vis) were carried out on a UV-visible spectrophotometer (PerkinElmer Lambda 650 S UV/VIS spectrometer) with a slit of 2.0 nm, data interval 1.0 nm, the scan speed of 600.00 nm/min, and a scan range of 800.00 nm to 350.00 nm. For the measurements of digested MOF films, a small piece of the MOF thin film was dissolved in 1.0 M NaOH aqueous solution. The obtained solution was then added into a quartz cell (1.0 cm) for UV-visible measurement.

Surface profiles analysis: Surface profiles of the films were characterised using a profilometer (DektakXT, BRUKER, Germany) with a diamond stylus in order to investigate their surface roughness.

Methanol vapor sorption: was carried out at a controlled temperature of 25 °C on an environmental-controlled quartz crystal microbalance (BELQCM-4 instrument, BEL Japan). Prior to sorption measurements, the PP-MOFs films were activated by soaking them in pure CH_2Cl_2 for 24 hours at room temperature and subsequently dried in a pure N₂ stream. Additionally, the samples were placed into the BEL-QCM instrument cells and in situ heated at 50 °C under a He stream (99.999%, 100 sccm) for two hours. After the activation process, the QCM frequency was recorded when the frequency change was stable within ±5 Hz over 30 min. Afterwards, methanol sorption isotherms were collected by varying the relative vapor pressure (P/P₀) of the saturated vapor of probe molecules in a He gas stream at 25 °C ranging from 0.0 to 95.0 %. The mass of the PP-MOFs films and adsorption amounts were calculated from the difference of the read QCM frequency and the fundamental frequency of the bare QCM substrate according to Sauerbrey's equation.

2. Chemicals and materials

All reagents and solvents were purchased from commercial sources and used without further purification unless otherwise stated: zinc nitrate hexahydrate $(Zn(NO_3)_2 \cdot 8H_2O, \ge 99\%)$, zinc acetate dihydrate $(Zn(OAC)_2 \cdot 2H_2O, 98\%)$, copper(II) chloride dihydrate $(CuCl_2 \cdot 2H_2O, 99\%)$ were purchased from ACROS; zirconium(IV) oxychloride octahydrate $(ZrOCl_2 \cdot 8H_2O, \ge 99.5\%)$, methacrylic acid (99%), acetic acid (reagent grade, $\ge 99.5\%$), methanol (anhydrous, 99.8%), Methyl 4-formylbenzoate ($\ge 96.0\%$) were purchased from Sigma Aldrich; meso-tetra(4-

carboxyphenyl)porphine (H₂TCPP, TCI); N,N-dimethylformamide (DMF; spectrophotometric grade, VWR); ethanol(absolute, Th. Geyer); zirconium(IV) n-propoxide (70% w/v in n-propanol, Alfa Aesar); gold substrate (Angstrom Engineering); silicon substrate (Siegert Wafer); ITO glass(Adrafruit).

3. Ligand synthesis

The tetrakis(4-carboxyphenyl)porphyrin (H₂TCPP) ligand was purchased from TCI. Copperinvolved TCPP (Cu-TCPP) ligand was synthesized based on previous reports.¹ Typically, we obtained it by three steps as follows:

1) 5,10,15,20-Tetrakis(4-methoxycarbonylphenyl)porphyrin (TPPCOOMe).

To refluxed propionic acid (100 mL) in a 500-mL three necked flask were added pyrrole (3.0, 0.043 mol) and methyl p-formylbenzoate (6.9 g, 0.042 mol), and the solution was refluxed for 12h in darkness. After the reaction mixture was cooled to room temperature, crystals were collected by suction-filtration to afford purple crystals (1.4g). 1 H NMR (300 MHz, CDCl₃): δ 8.81 (s, 8H), 8.43 (d, 8H), 8.28 (d, 8H), 4.11 (s, 12H), -2.83 (s, 2H).

2) [5,10,15,20-Tetrakis(4-methoxycarbonylphenyl)porphyrinato]-Cu(II) (CuTPPCOOMe).

A solution of TPPCOOMe 0.854 g (1.0 mmol) and $CuCl_2 \cdot 2H_2O$ (2.2g, 12.8 mmol) in 100 mL of DMF was refluxed for 6 h. After the mixture was cooled to room temperature, 150 mL of H_2O was added. The resultant precipitate was filtered and washed with 50 mL of H_2O for two times. The obtained solid was dissolved in CHCl₃, followed by washing three times with water. The organic layer was dried over anhydrous magnesium sulfate and evaporated to afford quantitative dark red crystals.

3) [5,10,15,20-Tetrakis(4-carboxyphenyl)porphyrinato]-Cu(II) (Cu-TCPP).

The obtained ester (0.75 g) was stirred in THF (25 mL) and MeOH (25 mL) mixed solvent, to which a solution of KOH (2.63 g, 46.95 mmol) in H₂O (25 mL) was introduced. This mixture was refluxed for 12 h. After cooling down to room temperature, THF and MeOH were evaporated. Additional water was added to the resulting water phase and the mixture was heated until the solid was fully dissolved, then the homogeneous solution was acidified with 1M HCl until no further precipitate was detected. The dark red was collected by filtration, washed with water and dried in vacuum. 1 H NMR (300 MHz, DMSO-d₆): δ 8.80 (s, 8H), 8.37 (d, 8H), 8.28 (d, 8H).

4. Synthesis of Zr₆O₄(OH)₄(OMc)₁₂

 $Zr_6O_4(OH)_4(OMc)_{12}$ (Hexazirconium-tetraoxy-tetrahydroxy-dodecamethacrylate) is known as a precursor to the metal secondary building unit (SBU) of zirconium-based PP-MOFs. The compound was synthesized according to the adapted procedure from Kickelbick and Schubert. In a large Schlenk flask, 1 mL of 70% w/v Zr(OPr)₄ (3.1 mmol) in n-propanol was mixed at room temperature with 1 mL of methacrylic acid (McOH; 11.8 mmol, 5.3 equiv) under inert gas atmosphere (Ar). After 2 weeks, the colorless crystals were collected by filtration and washing with small quantities of n-propanol. The product was dried in vacuum for 12 h and yielded the desired sample.

5. Preparation of PP-MOF films

1) Substrate pretreatment.

Au substrates (1 cm x 1 cm), Au-coated QCM substrates (AT cut type, Au electrode, diameter

14 mm, thickness 0.3 mm, and fundamental frequency ca. 4.95 MHz) were cleaned by soaking them in the mixed solution of water/H₂O₂/ammonia with a ratio of 5/1/1 at 75 °C for 15 min. Afterwards, the substrates were functionalised by immersing them into a solution of 16-mercaptohexadecanoic acid (MHDA, 20 μ M) in ethanol with acetic acid (5% v/v) or in a solution of 1-mercaptoundecanol (MUD, 20 μ M) in ethanol for at least 24 h at room temperature in order to obtain the –COOH or – OH terminated surface via self-assembled monolayers formation (SAM) and subsequently rinsed with pure ethanol and dried with N₂ before the use.

The silicon-wafers (1 cm x 1 cm), ITO glass substrates (1 cm x 1 cm) were cleaned in ethanol for about 10 min in an ultrasonic bath, and then activated under UV light for 60 min in order to in order to clean and generate a surface with hydroxyl groups. The substrates were used immediately for the growth of PP-MOFs films after UV light treatment.

2) Synthesis of 2D PP-MOF films.

Zn2(ZnTCPP) film growth via VAC. For the film growth using VAC, a 20 mL glass vial with a cap equipped was used. A Raschig-ring was placed on the bottom of the vial to offer an elevated flat platform for the substrate. Zn(NO₃)₂·6H₂O (4.5 mg, 0.015 mmol), TCPP (4 mg, 0.005 mmol), acetic acid (10 μ L, 1M in DMF solution) and pyrazine (0.8 mg, 0.01 mmol) were dissolved in a mixed solution DMF (1.5 mL) and ethanol (0.5 mL) as the precursor solution. A mixture of 1mL DMF/ethanol (v/v, 3/1) and 5 μ L acetic acid was filled into the vial as vapour source. Afterwards, the pre-treated Au/Silicon/ITO substrates (1 cm x 1 cm) was placed on top of the Raschig-ring and fully coated with 40 μ L freshly prepared MOF precursor solution. The vial was closed and was transferred into a preheated 80 °C oven where it was kept for the specified time (details in table S1). Afterwards the vial was removed. The film was immersed in fresh DMF and ethanol several times and then dried under vacuum.

The Zn₂(ZnTCPP) film grew without acetic acid in precursor solution and vapour source also conducted in same procedure only without acetic acid in precursor solution and vapour source. Zn2(ZnTCPP) film growth via solvothermal method. Zn(NO₃)₂·6H₂O (4.5 mg, 0.015 mmol), TCPP (4 mg, 0.005 mmol), acetic acid (10 μ L, 1M in DMF solution) and pyrazine (0.8 mg, 0.01 mmol) were dissolved in a mixed solution DMF (1.5 mL) and ethanol (0.5 mL) at room temperature and then the mixture were sonicated for 10 min. The –COOH functionalised Au substrate was then placed into the vial (with the activated side facing down to the bottom). Then, the reaction precursors were heated to 80 °C and kept for one day. After cooling down to room temperature, the obtained Zn₂(ZnTCPP) thin film was removed from the reaction mixture, rinsed with fresh DMF and ethanol, and dried at 50 °C under vacuum.

Zn2(ZnTCPP) film preparation via Modular Assembly. Firstly, Zn(NO₃)₂·6H₂O (4.5 mg, 0.015 mmol), TCPP (4 mg, 0.005 mmol), acetic acid (10 μ L, 1M in DMF solution) and pyrazine (0.8 mg, 0.01 mmol) were dissolved in a mixed solution DMF (1.5 mL) and ethanol (0.5 mL) at room temperature. The reaction mixtures were sonicated for 10 min and then heated to 80 °C and kept for one day. After slowly cooled to room temperature, the synthesized red powder was washed with ethanol and collected by centrifuging.

Secondly, the as-synthesized $Zn_2(ZnTCPP)$ nanosheets were dispersed in ethanol by ultrasonication to get a colloidal suspension (1.0 mg/cm³); The suspension was placed dropwise onto the surface of water in a beaker, and due to the hydrophobic property of the $Zn_2(ZnTCPP)$, they spread out to form a thin film; The thin film was easily transferred to a –COOH functionalised Au substrate by stamping. The film was immersed in pure water to remove un-deposited $Zn_2(ZnTCPP)$ nanosheets and the water on the substrate was blown away. Additional nanosheets could be repeatedly stacked in a layer-bylayer (LBL) growth fashion to create a $Zn_2(ZnTCPP)$ thin film with the desired thickness.

Zn2(ZnTCPP) film growth via LPE on pump system. Synthesis of Zn₂(ZnTCPP) thin films was conducted on a double-walled reaction vessel, which was heated with a silicon-oil thermostat. The solutions were pumped in and out by peristaltic pumps which were controlled by LAB view (National Instruments) on computer. For the growth of Zn₂(ZnTCPP), the –COOH functionalised Au substrate was placed in the reaction vessel (with the activated side facing down to the bottom) and alternatively treated with a 0.3 mM Zn(OAC)₂ in DMF/ethanol (v/v, 3/1) and 0.1 mM H₂TCPP in DMF/ethanol (v/v, 3/1) solution. The substrate was immersed into each solution for 10 min. In between these reactive steps, the substrate was rinsed with pure ethanol for 2 min. These deposition cycles were repeated 30 times (30 cycles) at 70 °C to fabricated the oriented crystalline Zn₂(ZnTCPP) thin films.

3) 3D PP-MOF films preparation.

a) PCN-222 films growth.

PCN-222 film growth via VAC. For the film growth using VAC, a 20 mL glass vial with a cap equipped was used. A Raschig-ring was placed on the bottom of the vial to offer an elevated flat platform for the substrate. A mixture of 1 mL DMF and 0.2 mL acetic acid was filled into the vial as vapour source. Afterwards, the pre-treated Au/Silicon/ITO substrates (1 cm x 1 cm) was placed on top of the Raschig-rings and fully coated with a drop of a freshly prepared MOF precursor solution. The vial was closed and was transferred into a preheated 100 °C oven where it was kept for the specified time (details in table S2). Afterwards the vial was removed from the oven and allowed to cool down for 10 min before the PCN-222 film was removed. The film was immersed in fresh DMF and ethanol several times and then dried under vacuum.

PCN-222 film growth via solvothermal method. $ZrOCl_2 \cdot 8H_2O$ (1.9 mg, 0.006 mmol), CuTCPP (1.7 mg, 0.002 mmol), acetic acid (75 μ L) were dissolved in 1 mL DMF at room temperature and then the mixture was sonicated for 10 min. The –COOH functionalised Au substrate was then placed into the vial (with the activated side facing down to the bottom). Then, the reaction precursors were heated to 100 °C and kept for one day. After cooling down to room temperature, the obtained PCN-222 film was removed from the reaction mixture, rinsed with fresh DMF and ethanol, and dried under vacuum.

PCN-222 film preparation via Modular Assembly. Firstly, the PCN-222 nanoparticles were synthesized using a solvothermal reaction. $ZrOCl_2 \cdot 8H_2O$ (5.7 mg, 0.006 mmol), CuTCPP (5.1 mg, 0.006 mmol), acetic acid (225 μ L) were dissolved in 3 mL DMF at room temperature and then the mixture were sonicated for 10 min. Then, the reaction precursors were heated to 100 °C and kept for one day. After slowly cooled to room temperature, the synthesized red powder was washed with fresh DMF and ethanol and collected by centrifuging.

Secondly, the as-synthesized PCN-222 nanoparticles were dispersed in ethanol by ultrasonication to get a colloidal suspension (1.0 mg/cm³); The suspension was placed dropwise onto the surface of water in a beaker, and due to the hydrophobic property of PCN-222, they spread out to form a thin film; The thin film was easily transferred to a –COOH functionalised Au substrate by stamping. The film was immersed in pure water to remove un-deposited PCN-222 and the water on the substrate was blown away. Additional cycles could be repeatedly stacked in a layer-by-layer (LBL) growth fashion to create a PCN-222 film with the desired thickness.

PCN-222 film growth via LPE on pump system. The synthesis of PCN-222 film was conducted on a double-walled reaction vessel, which was heated with a silicon-oil thermostat. The solutions were pumped in and out by peristaltic pumps which were controlled by LAB view (National Instruments) on computer. For the growth of PCN-222, 30 μ M Zr₆O₄(OH)₄(OMc)₁₂ solution (mixed with acetic acid, 50 and 100 eq.) and 60 μ M CuTCPP linker solution were prepared in DMF. The –COOH functionalised Au substrate was placed in the reaction vessel (with the activated side facing down to the bottom) and alternatively treated with a Zr₆O₄(OH)₄(OMc)₁₂ solution for 10 min and then CuTCPP linker solution for 10 min. The substrate was immersed into each solution for 10 min. Each subsequent step of dosing components was separated by a washing step of 2 min with absolute ethanol. These deposition cycles were repeated 30 times (30 cycles) at 100 °C to fabricate the PCN-222 films.

b) PCN-224 films growth.

PCN-224 film growth via VAC. For the film growth using VAC, a 20 mL glass vial with a cap equipped was used. A Raschig-ring was placed on the bottom of the bottle to offer an elevated flat platform for the substrate. A mixture of 1 mL DMF and 0.2 mL acetic acid was filled into the bottle as vapour source. Afterwards, the pre-treated Au/Silicon substrates (1 cm x 1 cm) was placed on top of the Raschig-ring and fully coated with a drop of a freshly prepared MOF precursor solution. The bottle was closed and was transferred into a preheated 70 °C oven where it was kept for the specified time (details in table S3). Afterwards the bottle was removed from the oven and allowed to cool down for 10 min before the PCN-224 film was removed. The film was immersed in fresh DMF and ethanol several times and then dried under vacuum.

c) MOF-525 films growth

MOF-525 film growth via VAC. For the film growth using VAC, a 20 mL glass vial with a cap equipped was used. A Raschig-ring was placed on the bottom of the bottle to offer an elevated flat platform for the substrate. A mixture of 1mL DMF and 0.2 mL acetic acid was filled into the bottle as vapour source. Afterwards, the pre-treated Au/Silicon/ITO substrates (1 cm x 1 cm) was placed on top of the Raschig-ring and fully coated with a drop of a freshly prepared MOF precursor solution. The bottle was closed and was transferred into a preheated 80 °C oven where it was kept for the specified time (details in table S4). Afterwards the bottle was removed from the oven and allowed to cool down for 10 min before the MOF-525 film was removed. The film was immersed in fresh DMF and ethanol several times and then dried under vacuum.

6. Supporting Figures

Fig. S1 Structures of the building units a) $Zn_2(COO)_4$ paddlewheel metal node, b) TCPP ligand for 2D $Zn_2(ZnTCPP)$ nanosheets; 2D "checkerboard" structure of $Zn_2(ZnTCPP)$ nanosheets c) view along [001] direction of one layer of $Zn_2(ZnTCPP)$; d) the layered structure of 2D $Zn_2(ZnTCPP)$ nanosheets stacked in an AA packing pattern, planes were inserted in each layer. H atoms have been omitted for clarity. Colour scheme: C, grey; O, red; N, pink and Zn, blue.

Fig. S2 GIXRD patterns of Zn₂(ZnTCPP) films grown by VAC method on different substrates: blank gold, –COOH SAM gold, –OH SAM gold, silicon and ITO glass.

Fig. S3 In-plane PXRD patterns of $Zn_2(ZnTCPP)$ films fabricated by VAC, solvothermal, modular assembly and LPE methods. The insert was the magnified (200) peak.

Fig. S4 ATR-IR spectra of TCPP ligand and $Zn_2(ZnTCPP)$ films fabricated on –COOH terminated gold substrates by different methods.

Fig. S5 UV-Vis spectra of TCPP ligand and $Zn_2(ZnTCPP)$ films fabricated on –COOH terminated gold substrates by different methods: VAC, solvothermal, modular assembly and LPE. Note that enlarged Q-band region is inserted.

Fig. S6 GIXRD patterns of Zn₂(ZnTCPP) film grown by VAC method on –COOH terminated gold substrate without acetic acid as modulator.

Fig. S7 SEM images of Zn₂(ZnTCPP) film grown by VAC method on –COOH terminated gold substrate without acetic acid as modulator.

Fig. S8 GIXRD patterns of Zn₂(ZnTCPP) film grown by VAC method on –COOH terminated gold substrate without acetic acid and DMF.

Fig. S9 SEM images of Zn₂(ZnTCPP) film grown by VAC method on –COOH terminated gold substrate without acetic acid and DMF.

Fig. S10 Cross-section SEM images of $Zn_2(ZnTCPP)$ films grown by VAC method on –COOH terminated gold substrate with (a) 30 μ L and (b) 60 μ L of precursor solution

Fig. S11 Roughness profiles of $Zn_2(ZnTCPP)$ films fabricated on –COOH terminated gold substrates by (a) VAC, (b) solvothermal, (c) modular assembly and (d) LPE methods.

Fig. S12 Different connectivities of Zr_6 clusters in the structures of Zirconium-based porphyrinic MOFs: (a) 12-connected Zr_6 cluster for MOF-525; (b) 8-connected Zr_6 cluster for PCN-222; (c-d) 6-connected Zr_6 cluster for PCN-224 ((c): side view; (d): top view). Colour scheme: C, grey; O, red, and Zr, aqua. The green polyhedron represent the octahedral geometry of the Zr_6 cluster.

Fig. S13 GIXRD patterns of PCN-222 films grown by VAC technique on different functionalised substrates: –COOH SAM gold, silicon, ITO glass. Note that VAC deposition was conducted using 30 μ L freshly prepared MOF precursor solution with the acetic acid as modulator (r_M = 219) at 100 °C for 3 h.

Fig. S14 (a) Side-view scheme (the *ab* plane) of the PCN-222 film grown upon functionalised substrate along *a* axis ([100] direction), in which the channels are parallel to the plane of the substrate; (b) the *bc* plane of PCN-222 film which nucleated on the substrate surface.

Fig. S15 GIXRD patterns of PCN-222 films grown on -COOH terminated gold substrates by VAC method with different modulator to metal ratios ($r_{\rm M}$).

Fig. S16 SEM images of PCN-222 film grown on –COOH terminated gold substrate by VAC method with $r_{\rm M}$ at 437

Fig. S17 GIXRD patterns of PCN-222 films grown by VAC method on –COOH terminated gold substrate with low and high precursor concentrations.

Fig. S18 GIXRD patterns of PCN-222 films grown on –COOH terminated gold substrates by VAC method using different reaction time.

Fig. S19 GIXRD patterns of PCN-222 films grown on –COOH terminated gold substrates by VAC method on different reaction temperatures.

Fig. S20 ATR-IR spectra of CuTCPP ligand and PCN-222 films fabricated on –COOH terminated gold substrates by VAC, solvothermal, modular assembly and LPE methods.

Fig. S21 Cross-section SEM images of PCN-222 films grown by VAC method on –COOH terminated gold substrate with (a) $30 \,\mu$ L and (b) $60 \,\mu$ L of precursor solution.

Fig. S22 SEM images of PCN-222 film grown on silicon (a-b) and ITO (c-d) by VAC.

Fig. S23 Roughness profiles of PCN-222 films fabricated on –COOH terminated gold substrates by (a) VAC, (b) solvothermal, (c) modular assembly and (d) LPE methods.

Fig. S24 GIXRD patterns of PCN-224 films grown by VAC method on different functionalised substrates.

Fig. S25 (a) Side-view scheme (*ab* plane) of PCN-224 film grown upon functionalised substrate along *a* axis ([200] direction); (b) the *bc* plane of PCN-224 film which nucleated on the substrate surface.

Fig. S26 GIXRD patterns of PCN-224 films grown on -COOH terminated gold substrates via VAC method with different modulator to metal ratios ($r_{\rm M}$).

Fig. S27 GIXRD patterns of PCN-224 films grown on –COOH terminated gold substrates via VAC method using different reaction time.

Fig. S28 GIXRD patterns of PCN-224 films grown on –COOH terminated gold substrates via VAC method on different reaction temperatures.

Fig. S29 SEM images of PCN-224 film grown on –COOH terminated gold substrate via VAC method; note that in the VAC deposition method, 30 μ L freshly prepared MOF precursor solution is used with acetic acid as modulator ($r_M = 1457$) at 70 °C for 3 h.

Fig. S30 Roughness profiles of (a) PCN-224 and (b) MOF-525 films fabricated on –COOH terminated gold substrates by VAC method.

Fig. S31 GIXRD patterns of MOF-525 films grown by VAC method on different functionalised substrates.

Fig. S32 (a) Side-view scheme of the MOF-525 film randomly grown upon functionalised substrate; (b) the *ab* plane and (c) *bc* plane of MOF-525.

Fig. S33 GIXRD patterns of MOF-525 films grown on -COOH terminated gold substrates via VAC method with different modulator to metal ratios (r_{M})

Fig. S34 GIXRD patterns of MOF-525 films grown on –COOH terminated gold substrates via VAC method using different reaction times.

Fig. S35 SEM images of MOF-525 film grown on –COOH terminated gold substrate via VAC method; note that during VAC deposition, $30 \ \mu$ L freshly prepared MOF precursor solution is used with acetic acid as modulator ($r_M = 730$) at 80 °C for 3 h.

Fig.S36 Methanol sorption isotherms at ambient temperature (25 °C) of PCN-224 film fabricated by VAC method on the –COOH terminated Au-coated QCM substrate.

Fig.S37 Methanol sorption isotherms at ambient temperature (25 °C) of MOF-525 film fabricated by VAC method on the –COOH terminated Au-coated QCM substrate.

7. Supporting Tables

Table S1. List of atomic coordinates for the simulated structure of $Zn_2(ZnTCPP)$ films.

Atoms	x	У	Z	Atoms	X	У	Z
Zn1	0	0	0	C7	-0.0653	0.1694	0
Zn2	0.5	0.5	0.2929	C8	-0.0404	0.2517	0
01	0.41519	0.41519	0.22326	H8	-0.0736	0.2965	0
N1	0.1205	0	0	N1	0	-0.1205	0
C1	0.39255	0.39255	0	C7	0.0653	-0.1694	0
C2	0.3271	0.3271	0	C8	0.0404	-0.2517	0
C3	0.29735	0.29735	0.2334	H8	0.0736	-0.2965	0
H1	0.3169	0.3169	0.39482	O1	-0.41519	-0.41519	-0.22326
C4	0.2387	0.2387	0.23537	C1	-0.39255	-0.39255	0
H2	0.21935	0.21935	0.39718	C2	-0.3271	-0.3271	0
C5	0.2089	0.2089	0	C3	-0.29735	-0.29735	-0.2334
C6	0.14505	0.14505	0	H1	-0.3169	-0.3169	-0.39482
C7	0.1694	0.0653	0	C4	-0.2387	-0.2387	-0.23537
C8	0.2517	0.0404	0	H2	-0.21935	-0.21935	-0.39718
H8	0.2965	0.0736	0	C5	-0.2089	-0.2089	0
01	0.41519	-0.41519	-0.22326	C6	-0.14505	-0.14505	0
C1	0.39255	-0.39255	0	C7	-0.0653	-0.1694	0
C2	0.3271	-0.3271	0	C8	-0.0404	-0.2517	0
C3	0.29735	-0.29735	-0.2334	H8	-0.0736	-0.2965	0
H1	0.3169	-0.3169	-0.39482	01	-0.41519	0.41519	-0.22326
C4	0.2387	-0.2387	-0.23537	C3	-0.29735	0.29735	-0.2334
H2	0.21935	-0.21935	-0.39718	H1	-0.3169	0.3169	-0.39482

C5	0.2089	-0.2089	0	C4	-0.2387	0.2387	-0.23537
C6	0.14505	-0.14505	0	H2	-0.21935	0.21935	-0.39718
C7	0.1694	-0.0653	0	01	-0.41519	-0.41519	0.22326
C8	0.2517	-0.0404	0	C3	-0.29735	-0.29735	0.2334
H8	0.2965	-0.0736	0	H1	-0.3169	-0.3169	0.39482
O1	0.41519	0.41519	-0.22326	C4	-0.2387	-0.2387	0.23537
N1	0	0.1205	0	H2	-0.21935	-0.21935	0.39718
C3	0.29735	0.29735	-0.2334	N1	-0.1205	0	0
H1	0.3169	0.3169	-0.39482	C7	-0.1694	-0.0653	0
C4	0.2387	0.2387	-0.23537	C8	-0.2517	-0.0404	0
H2	0.21935	0.21935	-0.39718	H8	-0.2965	-0.0736	0
C7	0.0653	0.1694	0	C7	-0.1694	0.0653	0
C8	0.0404	0.2517	0	C8	-0.2517	0.0404	0
H8	0.0736	0.2965	0	H8	-0.2965	0.0736	0
O1	0.41519	-0.41519	0.22326	Zn2	0.5	0.5	-0.2929
C3	0.29735	-0.29735	0.2334	Zn2	-0.5	-0.5	0.2929
H1	0.3169	-0.3169	0.39482	Zn2	-0.5	0.5	0.2929
C4	0.2387	-0.2387	0.23537	Zn2	0.5	-0.5	0.2929
H2	0.21935	-0.21935	0.39718	Zn2	-0.5	-0.5	-0.2929
O1	-0.41519	0.41519	0.22326	Zn2	-0.5	0.5	-0.2929
C1	-0.39255	0.39255	0	Zn2	0.5	-0.5	-0.2929
C2	-0.3271	0.3271	0	O1	0.58481	0.41519	0.22326
C3	-0.29735	0.29735	0.2334	01	0.58481	0.58481	0.22326
H1	-0.3169	0.3169	0.39482	01	0.41519	0.58481	0.22326
C4	-0.2387	0.2387	0.23537	01	0.41519	0.58481	-0.22326

H2	-0.21935	0.21935	0.39718	O1	0.58481	0.41519	-0.22326
C5	-0.2089	0.2089	0	O1	0.58481	0.58481	-0.22326
C6	-0.14505	0.14505	0				

Table S2. Recipes for the fabrication of $Zn_2(ZnTCPP)$ films by VAC.

	EXP		Pr	ecursor solut	tion			Drople	Substrate	Temper-ature	Reaction	Va	apour so	urce
	•	Zn(NO ₃) ₂ ·6H ₂ O	ТСРР	pyrazine	acetic acid	DMF	EtOH	t			time	DMF	EtOH	Acetic
					(1M in			volume						acid
					DMF)									
Variation of	1	4.5 mg	4.0 mg	0.8 mg	0 µl	1.5	0.5 mL	30 µL	-СООН	80 °C	3 h	1 mL	0 mL	0 μL
modulator		7.5 mmol/L	2.5 mmol/L	5 mmol/L	0 mmol/L	mL			SAM gold					
conentration	2	4.5 mg	4.0 mg	0.8 mg	10 µl	1.5	0.5 mL	30 µL	-COOH	80 °C	3 h	1 mL	0 mL	5 μL
		7.5 mmol/L	2.5 mmol/L	5 mmol/L	5 mmol/L	mL			SAM gold					
Variation of	3	4.5 mg	4.0 mg	0.8 mg	10 µl	1.5	0.5 mL	30 µL	Blank gold	80 °C	3 h	1 mL	0 mL	5 μL
substrate type		7.5 mmol/L	2.5 mmol/L	5 mmol/L	5 mmol/L	mL								
	4	4.5 mg	4.0 mg	0.8 mg	10 µl	1.5	0.5 mL	30 µL	-OH SAM	80 °C	3 h	1 mL	0 mL	5 μL
		7.5 mmol/L	2.5 mmol/L	5 mmol/L	5 mmol/L	mL			gold					
	5	4.5 mg	4.0 mg	0.8 mg	10 µl	1.5	0.5 mL	30 µL	Silicon	80 °C	3 h	1 mL	0 mL	5 μL
		7.5 mmol/L	2.5 mmol/L	5 mmol/L	5 mmol/L	mL			wafer					
	6	4.5 mg	4.0 mg	0.8 mg	10 µl	1.5	0.5 mL	30 µL	ITO glass	80 °C	3 h	1 mL	0 mL	5 μL
		7.5 mmol/L	2.5 mmol/L	5 mmol/L	5 mmol/L	mL								
	7	4.5 mg	4.0 mg	0.8 mg	10 µl	1.5	0.5 mL	30 µL	-COOH	80 °C	3 h	1 mL	0 mL	5 μL
		7.5 mmol/L	2.5 mmol/L	5 mmol/L	5 mmol/L	mL			SAM Au					
									QCM					
variation of	8	4.5 mg	4.0 mg	0.8 mg	10 µl	1.5	0.5 mL	60 μL	-СООН	80 °C	3 h	1 mL	0 mL	5 μL
droplet volume		7.5 mmol/L	2.5 mmol/L	5 mmol/L	5 mmol/L	mL			SAM gold					

variation of	9	4.5 mg	4.0 mg	0.8 mg	10 µl	0 mL	2.0 mL	30 µL	-СООН	80 °C	3 h	0 mL	1 mL	0 μL
solvent		7.5 mmol/L	2.5 mmol/L	5 mmol/L	5 mmol/L				SAM gold					

Table S3. Surface roughness of $Zn_2(ZnTCPP)$ films fabricated via different methods.

Methods	R _a (nm)	R _q (nm)
VAC	4.5	6.1
Solvothermal	54.1	61.2
Modular assembly	8.1	10.4
LPE	2.9	3.1

Table S4. Recipes for the fabrication of PCN-222 films by VAC.

	EXP		Precursor s	solution		Droplet	Substrate	Temperatur	Reaction	Vapour	· source
	•	ZrOCl ₂ ·8H ₂ O	CuTCPP	acetic acid	DMF	volume		e	time	DMF	Acetic acid
Variation of modulator	9	1.9 mg	1.7 mg	0 µL	1 mL	30 µL	-COOH	100 °C	3 h	1 mL	0.2 mL
conentration		6 mmol/L	2 mmol/L	0 mmol/L			SAM gold				
	10	1.9 mg	1.7 mg	25 μL	1mL	30 µL	-COOH	100 °C	3 h	1 mL	0.2 mL
		6 mmol/L	2 mmol/L	438 mmol/L			SAM gold				
	11	1.9 mg	1.7 mg	50 μL	1 mL	30 µL	-COOH	100 °C	3 h	1 mL	0.2 mL
		6 mmol/L	2 mmol/L	875 mmol/L			SAM gold				
	12	1.9 mg	1.7 mg	75 μL	1 mL	30 µL	-COOH	100 °C	3 h	1 mL	0.2 mL
		6 mmol/L	2 mmol/L	1314 mmol/L			SAM gold				
	13	1.9 mg	1.7 mg	150 μL	1 mL	30 µL	-COOH	100 °C	3 h	1 mL	0.2 mL
		6 mmol/L	2 mmol/L	2625 mmol/L			SAM gold				
	14	1.9 mg	1.7 mg	300 µL	1 mL	30 µL	-СООН	100 °C	3 h	1 mL	0.2 mL
		6 mmol/L	2 mmol/L	5250 mmol/L			SAM gold				

Variation of precursor	15	5.7 mg	5.1 mg	225 μL	1 mL	30 µL	-COOH	100 °C	3 h	1 mL	0.2 mL
conentration		18 mmol/L	6 mmol/L	3942 mmol/L			SAM gold				
Variation of substrate	16	1.9 mg	1.7 mg	75 μL	1 mL	30 µL	Silicon wafer	100 °C	3 h	1 mL	0.2 mL
type		6 mmol/L	2 mmol/L	1314 mmol/L							
	17	1.9 mg	1.7 mg	75 μL	1mL	30 µL	ITO glass	100 °C	3 h	1 mL	0.2 mL
		6 mmol/L	2 mmol/L	1314 mmol/L							
	18	1.9 mg	1.7 mg	75 μL	1mL	30 µL	-COOH	100 °C	3 h	1 mL	0.2 mL
		6 mmol/L	2 mmol/L	1314 mmol/L			SAM Au				
							QCM				
variation of droplet	19	1.9 mg	1.7 mg	75 μL	1 mL	60 µL	-COOH	100 °C	3 h	1 mL	0.2 mL
volume		6 mmol/L	2 mmol/L	1314 mmol/L			SAM gold				
Variation of reaction	20	1.9 mg	1.7 mg	75 μL	1mL	30 µL	-COOH	100 °C	12 h	1 mL	0.2 mL
time		6 mmol/L	2 mmol/L	1314 mmol/L			SAM gold				
Variation of reaction	21	1.9 mg	1.7 mg	75 μL	1 mL	30 µL	-COOH	80 °C	3 h	1 mL	0.2 mL
temperature		6 mmol/L	2 mmol/L	1314 mmol/L			SAM gold				
	22	1.9 mg	1.7 mg	75 μL	1 mL	30 µL	-COOH	120 °C	3 h	1 mL	0.2 mL
		6 mmol/L	2 mmol/L	1314 mmol/L			SAM gold				

 Table S5. Surface roughness of PCN-222 films fabricated via different methods.

Methods	R _a (nm)	R _q (nm)
VAC	2.2	2.7
Solvothermal	3.6	4.6
Modular assembly	5.5	6.9
LPE	4.0	4.7

	EXP		Precursor solu	ıtion		Droplet	Substrate	Temperatur	Reaction	Vapou	r source
	•	ZrOCl ₂ ·8H ₂ O	CuTCPP	acetic acid	DMF	volume		e	time	DMF	Acetic acid
Variation of	23	1.9 mg	1.3 mg	0 µL	1 mL	30 µL	-COOH SAM	70 °C	3 h	1 mL	0.2 mL
modulator		6 mmol/L	1.5 mmol/L	0 mmol/L			gold				
conentration	24	1.9 mg	1.3 mg	150 μL	1 mL	30 µL	-COOH SAM	70 °C	3 h	1 mL	0.2 mL
		6 mmol/L	1.5 mmol/L	2625 mmol/L			gold				
	25	1.9 mg	1.3 mg	300 µL	1 mL	30 µL	-COOH SAM	70 °C	3 h	1 mL	0.2 mL
		6 mmol/L	1.5 mmol/L	5250 mmol/L			gold				
	26	1.9 mg	1.3 mg	500 μL	1 mL	30 µL	-COOH SAM	70 °C	3 h	1 mL	0.2 mL
		6 mmol/L	1.5 mmol/L	8720 mmol/L			gold				
Variation of	27	1.9 mg	1.3 mg	500 μL	1 mL	30 µL	Silicon wafer	70 °C	3 h	1 mL	0.2 mL
substrate type		6 mmol/L	1.5 mmol/L	8720 mmol/L							
	28	1.9 mg	1.3 mg	500 μL	1 mL	30 µL	-COOH SAM	70 °C	3 h	1 mL	0.2 mL
		6 mmol/L	1.5 mmol/L	8720 mmol/L			Au QCM				
Variation of	29	1.9 mg	1.3 mg	500 μL	1 mL	30 µL	-COOH SAM	70 °C	12 h	1 mL	0.2 mL
reaction time		6 mmol/L	1.5 mmol/L	8720 mmol/L			gold				
Variation of	30	1.9 mg	1.3 mg	$500 \mu L$	1 mL	30 µL	-COOH SAM	100 °C	3 h	1 mL	0.2 mL
reaction		6 mmol/L	1.5 mmol/L	8720 mmol/L			gold				
temperature	31	1.9 mg	1.3 mg	500 μL	1 mL	30 µL	-COOH SAM	120 °C	3 h	1 mL	0.2 mL
		6 mmol/L	1.5 mmol/L	8720 mmol/L			gold				

Table S6. Recipes for the fabrication of PCN-224 films by VAC.

Table S7. Recipes for the fabrication of MOF-525 films by VAC.

EXP	Precursor solution			Droplet	Substrate	Temperatur	Reaction	Vapour	r source	
•	ZrOCl ₂ ·8H ₂ O	CuTCPP	acetic acid	DMF	volume		e	time	DMF	Acetic acid

Variation of modulator	32	1.9 mg	2.6 mg	12.5 μL	1 mL	30 µL	-COOH SAM	80 °C	3 h	1 mL	0.2 mL
concentration		6 mmol/L	3 mmol/L	219 mmol/L			gold				
	33	1.9 mg	2.6 mg	25 μL	1 mL	30 µL	-COOH SAM	80 °C	3 h	1 mL	0.2 mL
		6 mmol/L	3 mmol/L	438 mmol/L			gold				
	34	1.9 mg	2.6 mg	75 μL	1 mL	30 µL	-COOH SAM	80 °C	3 h	1 mL	0.2 mL
		6 mmol/L	3 mmol/L	1313 mmol/L			gold				
	35	1.9 mg	2.6 mg	125 μL	1 mL	30 µL	-COOH SAM	80 °C	3 h	1 mL	0.2 mL
		6 mmol/L	3 mmol/L	2188 mmol/L			gold				
	36	1.9 mg	2.6 mg	200 µL	1 mL	30 µL	-COOH SAM	80 °C	3 h	1 mL	0.2 mL
		6 mmol/L	3 mmol/L	3500 mmol/L			gold				
	37	1.9 mg	2.6 mg	250 μL	1 mL	30 µL	-COOH SAM	80 °C	3 h	1 mL	0.2 mL
		6 mmol/L	3 mmol/L	4375 mmol/L			gold				
Variation of substrate	38	1.9 mg	2.6 mg	250 μL	1 mL	30 µL	Silicon wafer	80 °C	3 h	1 mL	0.2 mL
type		6 mmol/L	3 mmol/L	4375 mmol/L							
	39	1.9 mg	2.6 mg	250 μL	1 mL	30 µL	ITO glass	80 °C	3 h	1 mL	0.2 mL
		6 mmol/L	3 mmol/L	4375 mmol/L							
	40	1.9 mg	2.6 mg	250 μL	1 mL	30 µL	-COOH SAM	80 °C	3 h	1 mL	0.2 mL
		6 mmol/L	3 mmol/L	4375 mmol/L			Au QCM				
Variation of reaction	41	1.9 mg	2.6 mg	250 μL	1 mL	30 µL	-COOH SAM	80 °C	12 h	1 mL	0.2 mL
time		6 mmol/L	3 mmol/L	4375 mmol/L			gold				

Table S8. Surface roughness of PCN-224 and MOF-525 films fabricated by VAC.

MOFs	R _a (nm)	R _q (nm)		
PCN-224	13.1	16.5		
MOF-525	8.5	10.3		

Reference

1. D. Feng, Z. Y. Gu, J. R. Li, H. L. Jiang, Z. Wei and H. C. Zhou, Angew. Chem., Int. Ed., 2012, 51, 10307.