Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Unravelling the Role of Alkaline Earth Metal Carbonate in Intermediate

Temperature CO₂ Capture by Alkali Metal Salt-Promoted MgO-Based Sorbents

Hongjie Cui, Zhenmin Cheng, and Zhiming Zhou*

School of Chemical Engineering,

East China University of Science and Technology

Shanghai 200237, China

* Corresponding Author

Phone: +86 21 6425 2230; Fax: +86 21 6425 3528; Email: zmzhou@ecust.edu.cn

Sorbents	<i>T</i> [°C]	$k_1 [{ m min}^{-1}]$	$k_2 [\min^{-1}]$	R^2
AMS-Mg ₁₀₀	260	0.148	0.017	0.990
	280	0.221	0.023	0.973
	300	0.305	0.039	0.985
	320	0.380	0.073	0.980
AMS-Mg ₉₀ Ca ₁₀	260	0.216	0.013	0.972
	280	0.317	0.022	0.984
	300	0.377	0.036	0.985
	320	0.465	0.057	0.971
AMS-Mg ₉₀ Sr ₁₀	260	0.153	0.010	0.986
	280	0.259	0.019	0.967
	300	0.312	0.027	0.987
	320	0.394	0.052	0.997
AMS-Mg ₉₀ Ba ₁₀	260	0.193	0.010	0.961
	280	0.291	0.014	0.984
	300	0.348	0.027	0.998
	320	0.442	0.049	0.980

Table S1 Estimated kinetic parameters for the AMS-promoted AeCO3-doped MgO-based sorbents

Somploo	Lattice parameter		
Samples	[nm]		
Mg ₁₀₀	0.4224		
Mg ₉₀ Ca ₁₀	0.4218		
$Mg_{90}Sr_{10}$	0.4214		
Mg ₉₀ Ba ₁₀	0.4213		
(b)			

Fig. S1 (a) XRD patterns and (b) lattice parameters of AeCO₃-doped MgO.

Fig. S2 XRD patterns of AMS-promoted MgO doped with (a) CaCO₃, (b) SrCO₃ and (c) BaCO₃.

Fig. S3 N₂ physisorption isotherms of AMS-promoted MgO doped with (a) CaCO₃, (b) SrCO₃ and (c) BaCO₃.

Fig. S4 Pore size distribution curves of AMS-promoted MgO doped with (a) CaCO₃, (b) SrCO₃ and (c) BaCO₃.

Fig. S5 FESEM images of fresh AMS-promoted AeCO₃-doped MgO sorbents.

Fig. S6 HRTEM images of fresh AMS-promoted AeCO₃-doped MgO sorbents.

Fig. S7 Diffractograms recorded by in-situ XRD analysis of (a) AMS-Mg₁₀₀, (b) AMS-Mg₉₀Ca₁₀, (c) AMS-Mg₉₀Sr₁₀ and (d) AMS-Mg₉₀Ba₁₀ when heating from 100 to 500 °C in CO₂.

Fig. S8 Diffractograms recorded by in-situ XRD analysis during regeneration of (a) AMS-Mg₁₀₀, (b) AMS-Mg₉₀Ca₁₀, (c) AMS-Mg₉₀Sr₁₀ and (d) AMS-Mg₉₀Ba₁₀ from 350 to 400 °C in N₂. (1-MgO; 2-MgCO₃; 3-CaCO₃; 4-SrCO₃; 5-BaCO₃; 6-K₂Mg(CO₃)₂; 7-CaMg(CO₃)₂; 8-BaMg(CO₃)₂).

Fig. S9 Measured and fitted CO₂ uptake of AMS-promoted AeCO₃-doped MgO sorbents in CO₂.

Fig. S10 Dynamic thermograms of AMS-promoted MgO doped with (a) CaCO₃, (b) SrCO₃ and (c) BaCO₃ (10 °C/min, in CO₂)

Fig. S11 CO₂ uptake profiles of AMS-promoted CaCO₃-doped MgO sorbents in 20 cycles (sorption: 350 °C for 20 min in CO₂; regeneration: 400 °C for 10 min in N₂; heating/cooling rate: 10 °C/min).

Fig. S12 CO₂ uptake profiles of AMS-promoted SrCO₃-doped MgO sorbents in 20 cycles (sorption: 350 °C for 20 min in CO₂; regeneration: 400 °C for 10 min in N₂; heating/cooling rate: 10 °C/min).

Fig. S13 CO₂ uptake profiles of AMS-promoted BaCO₃-doped MgO sorbents in 20 cycles (sorption: 350 °C for 20 min in CO₂; regeneration: 400 °C for 10 min in N₂; heating/cooling rate: 10 °C/min).

Fig. S14 FESEM images of 20 cycle-used AMS-promoted AeCO₃-doped MgO sorbents.

Fig. S15 CO₂ uptake profiles of AMS-Mg₉₀Ca₁₀ in 20 cycles (sorption: 300 °C for 60 min in (a) 20% CO₂ or (b) 40% CO₂; regeneration: 400 °C for 10 min in N₂; heating/cooling rate: 20 °C/min).