
1

Supporting Information

Machine Learning Scheme of Catalytic Activity of Alloys with 
Intrinsic Descriptors

Ze Yang, Wang Gao* and Qing Jiang*

School of Materials Science and Engineering, Jilin University, 130022 Changchun, P. R. China

Author Information

Corresponding Author

*wgao@mails.jlu.edu.cn

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.
This journal is © The Royal Society of Chemistry 2020



2

Note S1. Detailed information about tree ensemble models (RFR, ETR, GBR)

The tree ensemble methods evolved from the application of decision tree and ensemble 

method. Decision tree is a kind of non-parametric supervised learning method used for 

classification and regression. The goal of the method is to build a model that predicts the 

value of a target variable by learning simple decision rules inferred from the data features. 

The advantage of decision tree is its easiness to understand and explain, due to its visible 

tree model. The disadvantage is that it is easy to generate over-complex trees that do not 

generalize the data well, which is called overfitting.S1

 A single regression tree represents a simple piece-wise constant function, and an 

ensemble of multiple regression trees improves the flexibility of the model. This seems 

too simple for predicting continuous real values, but this simplicity is now widely known 

to work surprisingly well for general high-dimensional data.S2 Another important 

advantage to use tree ensemble methods are that they are less dependant on 

hyperparameter settings, and thus even a ML amateur can obtain good prediction 

performance. In many practical cases, tree ensemble methods with default 

hyperparameters can give a good baseline, whereas kernel methods with default 

hyperparameters may give a very poor performance (even worse than constant 

prediction). To appropriately setup the hyperparameters of kernel methods (KRR, SVR, 

GPR), it would usually require some expertise and experience.S3 Moreover, it can 

quantify the predictive power of a specific input feature by analyzing the reduction of the 

root mean squared error (RMSE) at each node of the tree to help us understand the 

importance of each feature.

The purpose of ensemble methods is to improve generalizability/robustness of a single 

estimator by combining the predictions of several base estimators, which are built with a 

given learning algorithm. Two families of ensemble methods are usually distinguished: (i) 

In averaging methods, the driving principle is to build several estimators independently 

and then to average their predictions and the combined estimator is usually better than 

any of the single base estimator because its variance is reduced; (ii) By contrast, in 
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boosting methods, base estimators are built sequentially and the bias of the combined 

estimator is reduced in each step.

For random forest regression (RFR), (i) n samples are selected from the data set  

using bootstrap sampling; (ii) k attributes are randomly selected from all attributes, and 

the best segmentation attribute is selected as the node to create a decision tree; (iii) m 

decision trees are established by repeating the above two steps for m times; (iv) these m 

decision trees form a random forest, and the voting result determines which range the 

data falls in.

 For extra tree regression (ETR), as a variant of RFR, it has the basically same 

principle as RFR. Each sub-decision tree of the extra tree is trained with the original data 

set, and the ETR randomly selects one eigenvalue to segment the decision tree. This will 

result in a larger decision tree, and that is to say, the variance of the ETR model is further 

reduced relative to RFR. In some cases, the generalization ability of ETR is stronger than 

that of  RFR.

For gradient boosting regression (GBR), it generates a weak prediction model based 

on the gradient of the loss function at each step, and weights them into the total model. 

GBR can simultaneously deal with continuous and discrete values by gradually reducing 

errors and has stronger robustness with less dependence on hyperparameter settings.
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Note S2. Further discussion of ML algorithms

To reproduce the results in the reference, we first use the input features provided by 

the ref. 13 and build the model with kernel ridge regression (KRR) method in scikit-learn 

package in the same hyperparameter settings. As shown in Figure S4, although the errors 

(RMSE) we get are slightly higher than that in the reference, the trends of performance of 

the models are consistent with that in the reference regardless of whether the d-band 

center is excluded or included under 4,800 trials, which shows that the inclusion of the d-

band center improves the accuracy significantly for all of the combinations of descriptors. 

This proves the reliability of our results, even though the sampling methods and the ML 

codes are different.

Next, we present the performance of our feature sets based on the models built by 

KRR algorithm instead of GBR algorithm in Figure S5. Slightly different from the GBR 

results, accuracy has a slight improvement (RMSE:0.35 eV→0.25 eV) with the inclusion 

of the d-band center, while the improvement is more significant (RMSE:0.45 eV→0.25 

eV) in Figure S4. We infer that it is probably due to the different  principles of the 

kernel methods and tree ensemble methods. The purpose of the kernel methods is to find 

and learn the mutual relationship in the original data. The original data is firstly 

embedded into the appropriate high-dimensional feature space by some kinds of 

nonlinear mapping, and then the general linear learner is used to analyze and process the 

patterns in this new space. However, our descriptors ψl and ψ in our feature sets are 

obtained by a simple analytical expression of the other two features, namely 

electronegativity and valence electron number. In other words, the kernel method needs 

more independent features to explore the correlation among features and to map to high-

dimensional space in a way similar to our descriptor construction process. On the other 

hand, there is no such problem for the tree ensemble methods. As a base estimator of the 

tree ensemble methods, decision tree is a greedy algorithm strategy for segmentation 

based on entropy and it does not examine the correlation between each input feature. 
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Therefore, our descriptors perform better with tree ensemble methods than with kernel 

methods.

Furthermore, we have to point out that the usage of active learning method in the 

reference is not reasonable.S4 In the case where the unlabeled data is abundant but 

manually labeling is expensive, the active learning algorithm can actively propose some 

labeling requests and submit some filtered data for experts tagging. The active learning 

method actually searches the entire data set first, and uses the most useful and different 

data in the data set as the training set. In one word, only in the face of massive unlabeled 

data, the active learning method should be used to reduce the training set and the labeling 

cost as much as possible. However, the data set used in the reference is less than 300 

samples, and the model trained from the training set actively selected in the data set is 

still used in the original data set, so it can be foreseen that the performance of such a 

model is very good. Hence, although the performance of our model seems to be slightly 

lower than that in the reference, our model has stronger generalized predictive power and 

robustness because of the randomness of its sampling.
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Figure S1 Results obtained from ML model based on the binding energy of various 
intermediates in ref. 4 including (a) CO*, (b) CHO* and (c) COH*.
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Figure S2 Results obtained from ML model based on the limiting potential of various 
reaction paths in ref. 4 including (a) CHO* and (b) COH*.
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Figure S3 Results obtained from ML model based on the binding energy of various 
intermediates in ref. 5 including (a) C*, (b) CH*, (c) CH2* and (d) CH3*.
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Figure S4. Performance of KRR algorithm with different feature sets taken from the 
reference: (a) without a d-band center, and (b) with a d-band center. All RMSE values 
were calculated for the whole data set.
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Figure S5. Performance of KRR algorithm with our different feature sets: (a) without a 
d-band center, and (b) with a d-band center. All RMSE values were calculated for the 
whole data set.
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Table S1. Electronic and free energy corrections for gas phase species. All corrections 

were determined at 298.15 K. The electronic energies correction (Ecorr) of CO were taken 

from the reference in order to adjust the limitation of PBE functional and ensure the 

consistency.

Species Ecorr (eV) ZPE (eV) -TS (eV)

CO(g) -0.20 0.15 -0.61

H2(g) / 0.27 -0.40

H2O(g) / 0.56 -0.58

Table S2. Free energy corrections for adsorbed species. All corrections were calculated 

in this study and determined at 298.15K. 

Species ZPE (eV) -TS (eV)

CO2* 0.355 -0.175

COOH* 0.636 -0.122

HCOOH* 0.926 -0.168

CO* 0.179 -0.065

CHO* 0.490 -0.14

COH* 0.485 -0.122

CH2O* 0.763 -0.149

CH3O* 1.112 -0.157

CH2OH* 1.111 -0.17

CH3OH* 1.451 -0.148

CHOH* 0.799 -0.131

CH* 0.335 -0.049

CH2* 0.669 -0.051
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CH3* 0.965 -0.065

CH4* 1.283 -0.101

O* 0.076 -0.044

OH* 0.348 -0.093

H2O* 0.622 0.17

H* 0.139 -0.066

H2* 0.385 -0.068

Table S3. Performance of ML model based on all the combinations of input feature sets.

R2 R2
test MAE (eV) RMSE (eV)Input 

Features
Mean Max Min Mean Max Min Mean Max Min Mean Max Min

χl 0.496 0.532 0.416 0.222 0.539 -0.368 0.292 0.31 0.278 0.372 0.401 0.359

SVl 0.736 0.748 0.689 0.646 0.784 0.298 0.233 0.246 0.226 0.269 0.292 0.263

ψl 0.699 0.752 0.593 0.338 0.739 -0.171 0.223 0.24 0.208 0.288 0.335 0.261

ψ 0.852 0.853 0.848 0.841 0.927 0.693 0.154 0.157 0.152 0.202 0.204 0.201

dc 0.832 0.85 0.787 0.67 0.87 0.358 0.154 0.169 0.146 0.215 0.242 0.203

χl , SVl 0.816 0.848 0.763 0.601 0.817 0.298 0.173 0.19 0.16 0.225 0.255 0.205

χl , ψl 0.817 0.863 0.729 0.548 0.808 -0.013 0.166 0.186 0.149 0.224 0.273 0.194

χl , ψ 0.954 0.962 0.915 0.908 0.966 0.709 0.081 0.093 0.076 0.112 0.153 0.081

SVl , ψl 0.819 0.861 0.742 0.569 0.809 0.162 0.172 0.187 0.157 0.223 0.267 0.196

SVl , ψ 0.963 0.97 0.944 0.935 0.98 0.78 0.072 0.078 0.068 0.101 0.124 0.091

ψl , ψ 0.966 0.97 0.955 0.931 0.973 0.834 0.073 0.078 0.068 0.097 0.111 0.09

dc , χl 0.953 0.966 0.926 0.869 0.965 0.673 0.076 0.086 0.069 0.113 0.143 0.096

dc , SVl 0.928 0.942 0.9 0.83 0.928 0.646 0.099 0.111 0.09 0.141 0.166 0.127

dc , ψl 0.944 0.961 0.922 0.849 0.936 0.605 0.084 0.093 0.075 0.123 0.147 0.104

dc , ψ 0.931 0.943 0.907 0.847 0.942 0.659 0.098 0.107 0.092 0.138 0.16 0.125
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χl , SVl , ψl 0.836 0.873 0.751 0.592 0.831 0.17 0.158 0.179 0.144 0.212 0.261 0.187

χl , SVl, ψ 0.978 0.984 0.961 0.947 0.987 0.82 0.054 0.063 0.049 0.077 0.104 0.067

χl , ψl , ψ 0.978 0.984 0.959 0.946 0.979 0.829 0.055 0.064 0.048 0.078 0.106 0.067

SVl , ψl , ψ 0.975 0.982 0.957 0.937 0.981 0.802 0.058 0.069 0.053 0.083 0.109 0.071

dc , χl , SVl 0.958 0.972 0.938 0.88 0.966 0.726 0.071 0.08 0.064 0.107 0.131 0.088

dc , χl , ψl 0.965 0.977 0.943 0.892 0.971 0.712 0.063 0.073 0.057 0.097 0.125 0.08

dc , χl , ψ 0.976 0.984 0.959 0.929 0.976 0.819 0.055 0.064 0.049 0.081 0.106 0.066

dc , SVl , 
ψl

0.956 0.97 0.928 0.87 0.96 0.641 0.074 0.084 0.066 0.11 0.141 0.091

dc , SVl , ψ 0.977 0.984 0.963 0.94 0.982 0.839 0.057 0.065 0.051 0.08 0.101 0.066

dc , ψl , ψ 0.977 0.985 0.958 0.933 0.982 0.82 0.054 0.06 0.047 0.079 0.108 0.063

χ , SVl , ψl 
, ψ 0.979 0.985 0.949 0.943 0.983 0.731 0.052 0.061 0.047 0.076 0.118 0.065

χl , SVl , ψl 
, dc

0.965 0.977 0.944 0.889 0.961 0.723 0.063 0.073 0.056 0.098 0.124 0.079

χl , SVl , 
ψ, dc

0.983 0.989 0.969 0.946 0.984 0.851 0.046 0.055 0.041 0.068 0.092 0.054

χl , ψl ,  
ψ , dc

0.984 0.991 0.963 0.946 0.985 0.813 0.043 0.053 0.037 0.066 0.1 0.05

SVl , ψl , ψ 
, dc

0.983 0.99 0.967 0.945 0.985 0.828 0.044 0.052 0.039 0.068 0.095 0.051

χl , SVl , ψl 
, ψ , dc

0.985 0.992 0.968 0.949 0.99 0.846 0.041 0.05 0.034 0.064 0.095 0.047

Table S4. Characteristic parameter α corresponding to various carbon-terminated 
intermediates involved in the carbon dioxide reduction reaction.

Species α

C* 0.8

CH* 0.6
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CH2* 0.4

CH3* 0.2

CO* 0.4

COH* 0.67

CHO* 0.3

CHOH* 0.47

COOH* 0.27

CH2O* 0.1

CH2OH* 0.27
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