Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Effects of Dynamic Covalent Bonds Multiplicity on Performance of Vitrimeric Elastomers

Shuangjian Yu,‡^a Ganggang Zhang,‡^a Siwu Wu,*^a Zhenghai Tang,^a Baochun Guo,*^a and Liqun Zhang,^b

^a Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, China

^b State Key Laboratory of Organic/Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China

* Corresponding Authors Email: wusiwu@scut.edu.cn (SW)

psbcguo@scut.edu.cn (BG)

Table of Content

Figure S1. ¹ H NMR, ¹³ C NMR and FTIR spectra of VPGAS4
Figure S2. ¹ H NMR spectrum and the signals assignment of GRS5
Figure S3. FTIR spectra of the uncured and cured GR and VGR samples
Figure S4. ¹ H NMR spectrum and the signal assignment of VGRS6
Figure S5. ¹ H NMR spectrum of GRS6
Figure S6. ¹ H NMR spectrum of VGRS7
Figure S7. Cross-linking kinetics of elastomeric vitrimers with single DCBs at 180 °CS7
Figure S8. Cross-linking kinetics of blank GR and VGR compounds at 180 °C and photos of the
swelling behaviors of the resultant GR and VGR samples in toluene
Figure S9. Photos of the samples swollen in toluene for 3 days
Figure S10. Comparison of cross-link densities and swelling ratios of samples with single DCBs.
Figure S11. Representative stress-strain curves of elastomeric vitrimers with single DCBs
Figure S12. Temperature dependence of Tan δ of elastomeric vitrimers with single DCBs
Figure S13. Fitting stress relaxation curves of all samples at different temperatures and temperature
dependence of τ^* of all the elastomeric samples
Figure S14. Normalized stress relaxation curves of GR sample cured by DDM without the addition
of TBD at 180 °C
Figure S15. Creep curves of all the elastomeric vitrimers under a nominal stress at 180 °CS11
Figure S16. Stress-strain curves and recovery ratios of mechanical performance of the original and
Figure S16. Stress-strain curves and recovery ratios of mechanical performance of the original and recycled β /S2/Sch samples after various recycling cycles
Figure S16. Stress-strain curves and recovery ratios of mechanical performance of the original and recycled β / <i>S2/Sch</i> samples after various recycling cycles
Figure S16. Stress-strain curves and recovery ratios of mechanical performance of the original and recycled β /S2/Sch samples after various recycling cycles
Figure S16. Stress-strain curves and recovery ratios of mechanical performance of the original andrecycled β /S2/Sch samples after various recycling cycles.S12Figure S17. FTIR spectra of the original and recycled β /S2/Sch samples after various recyclingcycles.S12Figure S17. FTIR spectra of the original and recycled β /S2/Sch samples after various recyclingcycles.S12Figure S18. Isothermal TGA curve of all samples at 210 °C for 3 h.S13
Figure S16. Stress-strain curves and recovery ratios of mechanical performance of the original and recycled β /S2/Sch samples after various recycling cycles.S12Figure S17. FTIR spectra of the original and recycled β /S2/Sch samples after various recycling cycles.S12Figure S18. Isothermal TGA curve of all samples at 210 °C for 3 h.S13Figure S19. Stress-strain curves and FTIR spectra of the original and recycled β /S2/Sch samples.
Figure S16. Stress-strain curves and recovery ratios of mechanical performance of the original and recycled β /S2/Sch samples after various recycling cycles. S12 Figure S17. FTIR spectra of the original and recycled β /S2/Sch samples after various recycling cycles. S12 Figure S18. Isothermal TGA curve of all samples at 210 °C for 3 h. S13 Figure S19. Stress-strain curves and FTIR spectra of the original and recycled β /S2/Sch samples.
Figure S16. Stress-strain curves and recovery ratios of mechanical performance of the original and recycled β /S2/Sch samples after various recycling cycles. Figure S17. FTIR spectra of the original and recycled β /S2/Sch samples after various recycling cycles. S12 Figure S18. Isothermal TGA curve of all samples at 210 °C for 3 h. S13 Figure S19. Stress-strain curves and FTIR spectra of the original and recycled β /S2/Sch samples. S13 Table S1. The recipe of synthesis of GR

Table S3. Compositions and molecular weights of the GR.	S14
Table S4. Vulcanization parameters for all the elastomeric vitrimers	S15
Table S5. Mechanical properties, cross-link density and T_g of all the vitrimers	S15
Table S6. τ^* , E_a and their synergy coefficients of all the elastomeric vitrimers	S15
Table S7. Comparison of the activation energies (Ea) of different DCBs.	S16
Calculations	S17
Determination of synergy coefficients <i>R</i>	S17
References	S18

Figure S1. 1 H NMR (a), 13 C NMR (b) and FTIR (c) spectra of VPGA.

Figure S2. ¹H NMR spectrum and the signals assignment of GR.

Figure S3. FTIR spectra of the uncured and cured GR and VGR samples.

Figure S4. ¹H NMR spectrum and the signal assignment of VGR.

Figure S5. ¹H NMR spectrum of GR.

Figure S6. ¹H NMR spectrum of VGR.

Figure S7. Cross-linking kinetics of elastomeric vitrimers with single DCBs at 180 °C.

Figure S8. (a) Cross-linking kinetics of blank GR and VGR compounds at 180 °C. (b) Photos of the swelling behaviors of the resultant GR and VGR samples in toluene.

Figure S9. Photos of the samples swollen in toluene for 3 days.

Figure S10. Comparison of cross-link densities (V_e) and swelling ratios of elastomeric vitrimers with single DCBs.

Figure S11. Representative stress-strain curves of elastomeric vitrimers with single DCBs.

Figure S12. Temperature dependence of Tan δ of elastomeric vitrimers with single DCBs.

Figure S13. Fitting stress relaxation curves of β (a), S2 (b), Sch (c), $\beta/S2$ (d), β/Sch (e), S2/Sch (f) and $\beta/S2/Sch$ (g) samples at different temperatures with 1% strain. (h) Temperature dependence of τ^* of all the elastomeric samples. The activation energy was calculated by fitting τ^* with Arrhenius equation.

Figure S14. Normalized stress relaxation curves of GR sample cured by DDM without the

addition of TBD at 180 °C.

Figure S15. Creep curves of all the elastomeric vitrimers under a nominal stress of 0.15 MPa at

180 °C.

Figure S16. (a) Stress-strain curves of the original and recycled β /S2/Sch samples after various recycling cycles. (b) Recovery ratios of mechanical performance for recycled β /S2/Sch samples after various recycling cycles.

Figure S17. FTIR spectra of the original and recycled β /S2/Sch samples after various recycling

cycles.

Figure S18. Isothermal TGA curve of all samples at 210 °C for 3 h.

Figure S19. Stress-strain curves (a) and FTIR spectra (b) of the original and recycled $\beta/S2/Sch$ samples. The recycled sample were prepared by hot pressing 1h after grinding the sample maintained at 210 °C for 3 h.

	Electrolyte solution				Activator solution		Emulsifier solution
Ingredients	Potassium hydroxide	Phosphoric acid	EDTA	TAMOL	Fe-EDTA	SFS	Rosin soap
Content/g	0.40	0.23	0.03	0.13	0.02	0.04	4.60
		Monomers			Deoxidant	Initiator	molecular weight regulator
Ingredients	Deionized water	Styrene	Butadiene	GMA	SHS	РМН	TDDM
Content/g	190	40	60	3	0.04	0.06	0.20

Table S1. The recipe of synthesis of GR

Table S2. Formulations for all the elastomeric samples^a

Samples	ß	<i>S2</i>	Sch	β/S2	ß/Sch	S2/Sch	β/S2/Sch
GR (phr)	100	100	_	100			_
VGR (phr)			100		100	100	100
DDM (phr)	2		2		2		
DDD (phr)		2.5		2.5		2.5	2.5
DMI (phr)	1.4	1.4	_	1.4	_	_	—
TBD (phr)	0.6			0.6	0.6		0.6

^aphr: per hundred parts of rubber.

Table S3. Compositions and molecular weights of the GR.

Sample	Com	mposition (wt%)		Mn	Mw	Mz	PDI
	Butadiene	Styrene	GMA	(g/mol)	(g/mol)	(g/mol)	
GR	23.6	72.35	4.05	47149	183699	354825	3.896

Samples	TC90 (min)	ML (dN·m)	MH (dN∙m)	$\Delta M (dN \cdot m)$
β	66.05	1.12	20.82	19.70
<i>S2</i>	74.55	1.23	21.23	20.00
Sch	288.35	1.17	19.13	17.96
β/S2	29.72	1.19	20.45	19.26
ß/Sch	146.85	1.34	17.67	16.33
S2/Sch	340.40	1.22	20.14	18.92
β/S2/Sch	162.68	1.20	19.94	18.74

Table S4. Vulcanization parameters for all the elastomeric vitrimers

Table S5. Mechanical properties, cross-link density and T_g of all the samples.

Samples	Tensile strength	Elongation at break	Young's modulus	Cross-link density	<i>T_g</i> (°C)
	(MPa)	(%)	(MPa)	(10 ⁻⁴ ·mol/cm ³)	
β	2.1±0.1	130.5±10.5	3.6±0.06	$1.7{\pm}0.01$	-16.2
<i>S2</i>	2.2±0.2	143.3 ± 7.5	3.5±0.10	1.7 ± 0.02	-14.5
Sch	2.5±0.3	152.7±14.7	3.5 ± 0.08	1.5 ± 0.01	-13.6
β/S2	2.2±0.3	156.9±19.6	3.5 ± 0.05	1.5 ± 0.05	-15.3
β/Sch	2.7±0.2	176.6±4.5	3.6 ± 0.05	1.7 ± 0.06	-13.8
S2/Sch	2.5±0.1	161.4 ± 4.2	3.5 ± 0.03	1.5 ± 0.03	-11.2
β/S2/Sch	2.7±0.2	161.0±8.2	3.6±0.04	1.6±0.03	-13.0

Table S6. τ^* , E_a and their synergy coefficients of all the elastomeric vitrimers^a

Samples	$ au^{*}$	R (<i>τ</i> *)	Ea	R² of linear fit	
	(min)		(kJ/mol)	for Ea	
β	201.2 ± 4.2	/	72.8 ± 2.2	0.97	
Sch	129.9 ± 2.76	/	58.1 ± 1.1	0.99	
<i>S2</i>	114.2 ± 3.2	/	51.2 ± 2.0	0.98	
β/Sch	96.9 ± 1.1	0.41 ± 0.01	53.7 ± 1.0	0.99	
$\beta/S2$	73.5 ± 2.4	0.57 ± 0.02	49.9 ± 1.8	0.96	
S2/Sch	43.5 ± 1.8	0.65 ± 0.02	51.6 ± 1.8	0.99	
β /S2/Sch	21.7 ± 1.0	0.86 ± 0.01	51.1 ± 0.7	0.98	
^a R (τ *): Synergetic coefficient of τ *.					

Exchange units	Ea (kJ /mol)	Ref.
Turnaratouification	55~150	[1-4]
Transesterification -	73±2	This work
Incine matchesis	49~86	[5-7]
Imine metatnesis	58±1	This work
D'aultida analaraa	43~127	[8-11]
Disuinde exchange -	51±2	This work

Table S7. Comparison of the activation energies (*Ea*) of different DCBs.

Calculations

Determination of synergy coefficients R

The relaxation time (τ') of hypothesized vitrimers are calculated by the following equations:

$$\tau' = x\tau^*(\beta) + y\tau^*(S2) + z\tau^*(Sch) \tag{1}$$

Where $\tau^*(\beta)$, $\tau^*(S2)$ and $\tau^*(Sch)$ are the τ^* of β , S2 and Sch samples at 180 °C, respectively. Accordingly, the synergy coefficients of the relaxation time ($R(\tau)$) of elastomeric vitrimers with different DCBs multiplicity are calculated:

$$R(\tau) = \frac{\tau' - \tau'}{\tau'}$$
(2)

Where τ^* are the measured characteristic relaxation time of elastomeric vitrimers with different DCBs multiplicity at 180 °C.

Taking a set of stress relaxation test results of $\beta/S2/Sch$ sample with triple DCBs as an example, the proportions of beta-hydroxyl ester, disulfide and Schiff base in its hypothesized vitrimer are 2/5, 1/5 and 2/5, respectively. Accordingly, τ' of the hypothesized vitrimer and $R(\tau)$ of $\beta/S2/Sch$ sample can be calculated as follows.

$$\tau'(\beta/S2/Sch) = \frac{2}{5}\tau^*(\beta) + \frac{1}{5}\tau^*(S2) + \frac{2}{5}\tau^*(Sch) = \frac{2}{5}\times201.2 + \frac{1}{5}\times118.6 + \frac{2}{5}\times126.6 = 154.8 \text{ (min)}$$
$$R(\tau(\beta/S2/Sch)) = \frac{\tau'(\beta/S2/Sch) - \tau^*(\beta/S2/Sch)}{\tau'(\beta/S2/Sch)} = \frac{154.8 - 20.8}{154.8} = 0.87$$

References

[1] D. Montarnal, M. Capelot, F. Tournilhac, L. Leibler, Science, 2011, 334, 965-968.

[2] M. Capelot, M. M. Unterlass, F. Tournilhac, L. Leibler, ACS Macro Lett., 2012, 1, 789-792.

[3] J. P. Brutman, P. A. Delgado, M. A. Hillmyer, ACS Macro Lett., 2014, 3, 607-610.

[4] J. L. Self, N. D. Dolinski, M. S. Zayas, J. Read de Alaniz, C. M. Bates, ACS Macro Lett., 2018, 7, 817-821.

[5] S. Wang, S. Ma, Q. Li, W. Yuan, B. Wang, J. Zhu, Macromolecules, 2018, 51, 8001-8012.

[6] S. Dhers, G. Vantomme, L. Avérous, Green Chem., 2019, 21, 1596-1601.

[7] Y. Liu, Z. Tang, J. Chen, J. Xiong, D. Wang, S. Wang, S. Wu, B. Guo, *Polym. Chem.*, 2020, 11, 1348-1355.

[8] H. Xiang, M. Rong, M. Zhang, ACS Sustainable Chem. Eng., 2016, 4, 2715-2724.

[9] A. R. de Luzuriaga, R. Martin, N. Markaide, A. Rekondo, G. Cabanero, J. Rodri'guez, I. Odriozola, *Mater. Horiz.*, 2016, **3**, 241-247.

[10] H. Xiang, J. Yin, G. Lin, X. Liu, M. Rong, M. Zhang, Chem. Eng. J, 2019, 358, 878-890.

[11] J. Chen, W. Yuan, Y. Li, Y. Weng, J. Zeng, ACS Sustainable Chem. Eng., 2019, 7, 15147-15153.