Supplementary Materials

Blue Order/Disorder Janus-Type TiO₂ Nanoparticles for Enhanced Photocatalytic Hydrogen Generation

Liangsheng Hu,^a Yong Li,^a Weiran Zheng,^a Yung-Kang Peng,^b Shik Chi Edman Tsang,^b Lawrence Yoon Suk Lee,^{a,*} and Kwok-Yin Wong^{a,*}

- ^a Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- ^b Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, OX1 3QR, UK

*Corresponding Authors: lawrence.ys.lee@polyu.edu.hk (L. Y. S. Lee);

kwok-yin.wong@polyu.edu.hk (K.-Y. Wong)

Fig. S1. Digital photos of (a) pristine A-TiO₂ and the A-TiO₂ samples treated by magnesiothermic reduction (MTR) at (b) 500, (c) 525, (d) 550, (e) 575, and (f) 600 °C. The MTR reaction time was 30 min.

Fig. S2. Photographic images of (a) pristine R-TiO₂ and R-TiO₂ samples treated by magnesiothermic reduction at (b) 500, (c) 525, (d) 550, (e) 575, and (f) 600 °C. The reaction time was 30 min for all samples.

Fig. S3. Raman shifts of (a) untreated anatase TiO_2 and reduced A- TiO_2 samples from 500 °C to 600 °C and (b) untreated rutile TiO_2 and reduced A- TiO_2 samples from 500 °C to 575 °C.

Fig. S4. HR-TEM images of (a) untreated anatase TiO_2 (A-Untreated) and (b-f) A-TiO₂ samples treated by magnesiothermic reduction at 500 to 600 °C for 30 min.

Fig. S5. (a-e) HR-TEM images of untreated rutile TiO_2 (R-Untreated) and R-TiO₂ samples treated by magnesiothermic reduction at 500 to 600 °C for 30 min. (f) and (g) are the fast Fourier transformation (FFT) images for (a) and (e), respectively.

Fig. S6. Low- and high-magnification TEM images of (a-b) P25 and (c-d) B-P25 TiO₂ samples. A: Anatase TiO₂, R: Rutile TiO₂, D: disorder.

Fig. S7. High-resolution TEM image of B-P25 TiO_2 showing a larger area in the disordered

region.

Fig. S8. (a) UV-Vis absorption spectra and (b) the corresponding Tauc plots of untreated P25 and treated P25 by MTR at 500 to 600 °C for 30 min.

Fig. S9. Hydrogen production during a continuous 18-hour HER photocatalysis over P25 and B-P25.

Fig. S10. Low- and high-magnification TEM images of B-P25 TiO₂ after the cyclic photocatalytic reactions.

Fig. S11. Comparisons of (a) XRD patterns, (b) UV-Vis absorption spectra, (c) Raman spectra, and (d) extinction coefficients of B-P25 TiO_2 before (fresh) and after (used) the cyclic photocatalytic reactions.

Fig. S12. Comparisons of high-resolution XPS (a) Ti 2p and (b) O 1s spectra of B-P25 TiO₂ before (fresh) and after (used) the cyclic photocatalytic reactions.

Fig. S13. Comparison of photocatalytic HER rates among A-TiO₂, A-TiO₂, P25-TiO₂, and treated A-TiO₂, A-TiO₂, P25-TiO₂ samples.

Fig. S14. (a) Full XPS survey and (b) solid-state EPR spectra of P25 and B-P25 recorded at 25 °C.

Fig. S15. Schematic illustrations of density of states (DOS) of (a) A-TiO₂ and A-575 and (b) R-TiO₂ and R-575.

Fig. S16. Photocurrent response of P25 and B-P25 under visible light irradiation.

Fig. S17 (a) HR-TEM image and (b) EDX spectrum of P25/Pt. (c) HR-TEM image and (d) EDX spectrum of B-P25/Pt.

Photocatalyst	Structure	Cocatalyst	Light source	HER rate (mmol h ⁻¹ g ⁻¹)	Ref.
Hydrogenated anatase TiO ₂	Core/shell	0.5 wt.% Pt	300 W Xe lamp, Visible light ($\lambda > 420$ nm)	0.064	1
Hydrogenated N- doped anatase TiO ₂	Core/shell	0.5 wt.% Pt	300 W Xe lamp, AM1.5	1.5	2
NaBH ₄ -reduced rutile TiO ₂	Core/shell	0.2 wt.% Pt	300 W Xe lamp	7.34	3
NaBH ₄ -reduced rutile TiO ₂	Core/shell	1 wt.% Pt	300 W Xe lamp	0.11	4
			Visible light ($\lambda > 420 \text{ nm}$)	0.02	
NaBH ₄ reduced P- 25	Core/shell	1 wt.% Pt	300 W Xe lamp	6.5	5
			Visible light ($\lambda > 400 \text{ nm}$)	0.18	
Zn reduced Rutile TiO ₂	Core/shell	1 wt.% Pt	300 W Xe lamp	6.0	6
			Visible light ($\lambda > 420$ nm)	0.08	
Li-EDA treated P25	Heterojunction	No	300 W Xe lamp	3.46	7
		0.5 wt.% Pt	300 W Xe lamp	13.89	
Al reduced N- doped P25	Core/shell	0.5 wt.% Pt	300 W Xe lamp	15.0	8
			Visible light ($\lambda > 400 \text{ nm}$)	0.2	
Mg reduced B–N co-doped TiO ₂	Core/shell	1.0 wt.% Pt	300 W Xe lamp	18.8	9
Hydrogenated TiO ₂	Core/shell	0.6% Pt	AM 1.5 solar simulator	10.0	10
Hydrogenated F- doped TiO ₂	Core/shell	0.6% Pt	AM 1.5 solar simulator	3.76	11
B-P25 NPs	Order/disorder Janus structure	No	150 W Xe lamp, simulated solar light	1.56	This work
			Visible light ($\lambda > 400 \text{ nm}$)	0.38	
		1 wt.% Pt	150 W Xe lamp, simulated solar light	11.53	
			Visible light ($\lambda > 400 \text{ nm}$)	3.52	

 Table S1. Comparison of HER rates of recently reported black TiO₂-based photocatalysts.

Reference

- J. W. Xue, X. D. Zhu, Y. Zhang, W. D. Wang, W. Xie, J. L. Zhou, J. Bao, Y. Luo, X. Gao, Y. Wang, L. Y. Jang, S. Sun and C. Gao, *ChemCatChem*, 2016, 8, 2010-2014.
- K. F. Zhang, W. Zhou, L. N. Chi, X. C. Zhang, W. Y. Hu, B. J. Jiang, K. Pan, G. H. Tian and Z. Jiang, *ChemSusChem*, 2016, 9, 2841-2848.
- F. Xiao, W. Zhou, B. J. Sun, H. Z. Li, P. Z. Qiao, L. P. Ren, X. J. Zhao and H. G. Fu, *Sci. China-Mater.*, 2018, 61, 822-830.
- Z. Zhao, X. Y. Zhang, G. Q. Zhang, Z. Y. Liu, D. Qu, X. Miao, P. Y. Feng and Z. C. Sun, Nano Research, 2015, 8, 4061-4071.
- H. Tan, Z. Zhao, M. Niu, C. Mao, D. Cao, D. Cheng, P. Feng and Z. Sun, *Nanoscale*, 2014, 6, 10216-10223.
- Z. Zhao, H. Q. Tan, H. F. Zhao, Y. Lv, L. J. Zhou, Y. J. Song and Z. C. Sun, *Chem. Commun.*, 2014, 50, 2755-2757.
- K. Zhang, L. Wang, J. K. Kim, M. Ma, G. Veerappan, C.-L. Lee, K.-j. Kong, H. Lee and J. H. Park, *Energy Environ. Sci.*, 2016, 9, 499-503.
- T. Lin, C. Yang, Z. Wang, H. Yin, X. Lü, F. Huang, J. Lin, X. Xie and M. Jiang, *Energy Environ. Sci.*, 2014, 7, 967-972.
- 9. Y. Li, R. Fu, M. Gao and X. Wang, Int. J. Hydrogen Energy, 2019, 44, 28629-28637.
- 10. X. Chen, L. Liu, Y. Y. Peter and S. S. Mao, Science, 2011, 331, 746-750.
- Q. Gao, F. Si, S. Zhang, Y. Fang, X. Chen and S. Yang, *Int. J. Hydrogen Energy*, 2019, 44, 8011-8019.