Highly Efficient Catalysis for Oxygen Reduction using Well-dispersed Iron Carbide Nanoparticles Embedded in the Multichannel Hollow Nanofibers

Hongyin Xiaab, Shan Zhanga, Xiaoqing Zhua, Huanhuan Xinga, Yuan Xueab, Bolong Huangc*, Mingzi Sunc, Jing Lia*, and Erkang Wanga*

a State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.

b University of Science and Technology of China, Hefei, Anhui, 230026, China.

c Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
Equations in Electrochemical characterization

The H$_2$O$_2$ yield and the number of electron transfer (n) were calculated with the following equations:

$$H_2O_2\% = \frac{200 \times I_r/N}{I_d + I_r/N}$$ \hspace{1cm} (1)

$$n = \frac{4I_d}{I_d + I_r/N}$$ \hspace{1cm} (2)

where I_d is the disk current, I_r is the ring current, and N (0.37) is the collection efficiency of the rotating ring-disk electrode (RRDE).

Koutecky-Levich equations:

$$\frac{1}{J} = \frac{1}{J_l} + \frac{1}{J_k} = \frac{1}{B \omega^{0.5}} + \frac{1}{J_k}$$ \hspace{1cm} (3)

$$B = 0.62nFC_0(D_0)^{2/3}V^{-1/6}$$

where J is the recorded current density, J_k is the kinetic-limiting current density, J_l is the diffusion-limiting current density, ω is the electrode rotating speed in rad s$^{-1}$, F is the Faraday constant (96485 C mol$^{-1}$), C_0 is the bulk concentration of O$_2$ in 0.10 M KOH solution (1.2×10^{-6} mol cm$^{-3}$), D_0 is the diffusion coefficient of O$_2$ (1.9×10^{-5} cm2 s$^{-1}$), and V is the kinematic viscosity of 0.10 M KOH solution (0.01 cm2 s$^{-1}$). The K-L plots ($\omega^{-1/2}$ vs J^{-1}) in O$_2$-saturated 0.1 M KOH can be derived from LSV curves at various rotation speeds and different potentials.
Calibrate to reversible hydrogen electrode (RHE)

In all measurements, we used Hg/HgO electrode as the reference electrode. It was calibrated with respect to RHE. The calibration was performed in the high purity H₂ saturated electrolyte with a Pt wire as the working electrode. CVs were run at a scan rate of 1 mV·s⁻¹, and the average of the two potentials at which the current crossed zero was taken to be the thermodynamic potential for the hydrogen electrode reactions. In 0.1 M KOH, E (RHE) = E (Hg/HgO) + 0.879 V. All the potentials reported in this manuscript were against RHE.

Figure S1. (a) Calibration of the reference electrode against the RHE.
Figure S2. (a and b) SEM, (c) TEM images (d) XRD of Fe\textsubscript{3}C@SNFs.

Figure S3. (a) Nitrogen adsorption-desorption isotherms for the Fe\textsubscript{3}C@SNFs.
Figure S4. (a) XPS survey for the Fe$_3$C@MHNFs.

Figure S5. (a) LSV curves of Fe$_3$C@MHNFs at different rotating speeds, (b) the corresponding K-L plots.

Figure S6. SEM and TEM for (a) MHNFs, (b) Fe$_3$C-1@MHNFs, (c) Fe$_3$C@MHNFs, (d) Fe$_3$C-3@MHNFs.
Figure S7. (a) Polarization curves and (b) $E_{1/2}$ of the MHNFs, Fe$_3$C-1@MHNFs, Fe$_3$C@MHNFs and Fe$_3$C-3@MHNFs.

Figure S8. (a) Polarization curves of Fe$_3$C@MHNFs and A-Fe$_3$C@MHNFs; (b) TEM image of A-Fe$_3$C@MHNFs; (c) XPS survey, (d) N 1s XPS spectra of Fe$_3$C@MHNFs and A-Fe$_3$C@MHNFs.
Figure S9. (a) Raman; (b) CV curves; (c) Polarization curves; (d) $E_{1/2}$ of Fe$_3$C@MHNFs-800, Fe$_3$C@MHNFs and Fe$_3$C@MHNFs-1000.

Figure S10. (a) LSV curves of Fe$_3$C@MHNFs in 0.5 M H$_2$SO$_4$.

Figure S11. (a) XRD of the MHNFs.
Table S1. Comparison of the ORR activities of Fe₃C@MHNFs with the noble-metal-free catalysts literature-reported.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Electrolyte</th>
<th>$E_{1/2}$ (V vs. RHE)</th>
<th>Catalyst loading (mg cm⁻²)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₃C@MHNFs</td>
<td>0.1 M KOH</td>
<td>0.90</td>
<td>0.20</td>
<td>This work</td>
</tr>
<tr>
<td>Fe-N/C-800</td>
<td>0.1 M KOH</td>
<td>0.80</td>
<td>0.10</td>
<td>1</td>
</tr>
<tr>
<td>BCNFNHs</td>
<td>0.1 M KOH</td>
<td>0.86</td>
<td>1.20</td>
<td>2</td>
</tr>
<tr>
<td>Fe@C-FeNC</td>
<td>0.1 M KOH</td>
<td>0.89</td>
<td>0.70</td>
<td>3</td>
</tr>
<tr>
<td>C-FeZIF-900-0.84</td>
<td>0.1 M KOH</td>
<td>0.84</td>
<td>0.50</td>
<td>4</td>
</tr>
<tr>
<td>HP-Fe-N/CNFs</td>
<td>0.1 M KOH</td>
<td>0.81</td>
<td>0.25</td>
<td>5</td>
</tr>
<tr>
<td>Fe-NMP</td>
<td>0.1 M KOH</td>
<td>0.65</td>
<td>0.25</td>
<td>6</td>
</tr>
<tr>
<td>Fe/N/S-CNTs</td>
<td>0.1 M KOH</td>
<td>0.88</td>
<td>0.50</td>
<td>7</td>
</tr>
<tr>
<td>Fe14NDC-9</td>
<td>0.1 M KOH</td>
<td>0.88</td>
<td>0.25</td>
<td>8</td>
</tr>
</tbody>
</table>

Table S2. XPS of Fe₃C@MHNFs synthesized with ammoniation and A-Fe₃C@MHNFs synthesized without ammoniation.

<table>
<thead>
<tr>
<th>Samples</th>
<th>C (at%)</th>
<th>N (at%)</th>
<th>O (at%)</th>
<th>Fe (at%)</th>
<th>pyridinic N (%)</th>
<th>pyrrolic N (%)</th>
<th>graphitic N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₃C@MHNFs</td>
<td>92.71</td>
<td>2.60</td>
<td>4.24</td>
<td>0.45</td>
<td>0.30</td>
<td>0.21</td>
<td>0.49</td>
</tr>
<tr>
<td>A-Fe₃C@MHNFs</td>
<td>93.08</td>
<td>1.21</td>
<td>5.30</td>
<td>0.41</td>
<td>0.23</td>
<td>0.29</td>
<td>0.48</td>
</tr>
</tbody>
</table>
Reference