ELECTRONIC SUPPORTING INFORMATION

High performance direct borohydride fuel cell using bipolar interfaces and noble metal-free Ni-based anodes

<u>Guillaume Braesch^{1,2}</u>, Zhongyang Wang³, Shrihari Sankarasubramanian⁴. Alexandr G. Oshchepkov^{2,5}, Antoine Bonnefont⁶, Elena R. Savinova², Vijay Ramani⁴, Marian Chatenet¹

¹ University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management, University Grenoble Alpes), LEPMI, 38000 Grenoble, France

² Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, UMR 7515 CNRS-University of Strasbourg, 67087 Strasbourg Cedex, France

³ Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA

⁴ Center for Solar Energy and Energy Storage and Department of Energy, Environmental and Chemical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA.

⁵ Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia

⁶ Institut de Chimie de Strasbourg, UMR 7177 CNRS-University of Strasbourg, 67070 Strasbourg, France

SI 1. EDS spectra of Nickel Felt (NFT) at its initial state

Figure SI 1. (a) EDS spectrum of nickel felt (0.5) obtained using EDAX® OCTANE ELITE 25 EDS sensor in a Zeiss® Gemini SEM-500 operated at 15 kV. Small peaks can be detected and are shown in more details on the inset (b): traces of iron, molybdenum and chromium are detected on the material. The aluminium peak is attributed to the SEM support.

SI 2. XRD pattern of Nickel Felt (NFT) at its initial state

Figure SI 2. XRD pattern of the nickel felt (F0.5), obtained with a Bruker® D8 ADVANCE Diffractometer, compared to the theoretical pattern of Ni (cubic Fm-3m (225)) (red lines).

Figure SI 3. Polarization curves in DBFC conditions obtained at various cell temperatures for an anode comprising a 1 mg cm⁻² Pd/C catalyst immobilized at a Ni foam current collector and a cathode comprising 1 mg cm⁻² Pt/C catalyst immobilized at a carbon-based GDL. Anolyte: 3 M KOH + 1.5 M NaBH₄, catholyte: 1.5 M H₂SO₄ + 15 wt.% H₂O₂, flow rate: 0.4 mL.min⁻¹.cm⁻².

REFERENCES

- 1. Wang, Z., Parrondo, J., He, C., Sankarasubramanian, S. & Ramani, V. Efficient pHgradient-enabled microscale bipolar interfaces in direct borohydride fuel cells. *Nat. Energy* **4**, 281–289 (2019).
- 2. Oshchepkov, A. G. *et al.* Nickel Metal Nanoparticles as Anode Electrocatalysts for Highly Efficient Direct Borohydride Fuel Cells. *ACS Catal.* **9**, 8520–8528 (2019).
- 3. Braesch, G. *et al.* Nickel 3D Structures Enhanced by Electrodeposition of Nickel Nanoparticles as High Performance Anodes for Direct Borohydride Fuel Cells. *ChemElectroChem* 7, 1789–1799 (2020).