Supplementary information

Self-Supporting Composited Electrocatalysts of Ultrafine Mo₂C on 3D-Hierarchical Porous Carbon Monoliths for Efficient Hydrogen Evolution

Haiyang Lu^a, Boxu Gao^a, Hongbin Zhang^{b*}, Xueliang Fan^a, Luyao Zheng^a, Jingwen Tan^c, Sinong Wang^b, Yahong Zhang^a, Qingsheng Gao^{c*}, Yi Tang^{a*}

a. Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China. E-email: <u>yitang@fudan.edu.cn</u>
b. Institute for Preservation of Chinese Ancient Books, Fudan University Library, Fudan University, Shanghai 200433, China. E-email: zhanghongbin@fudan.edu.cn

c. Department of Chemistry, Jinan University, Guangzhou 510632, China. E-email: tqsgao@jnu.edu.cn

Calculation of Mo₂C content

A combustion reaction during the heating process can eliminate all the carbon elements and transform Mo₂C into MoO₃.¹ Thus, the content of Mo elements and Mo₂C can be further calculated through MoO₃ content according to the following equation:

$$m_{Mo_2C}\% = \frac{m_{residual}\% \times M(Mo_2C)}{2 \times M(MoO_3)}$$

Take 3D Mo₂C/PCM-4 for example, $m_{Mo_2C}\% = \frac{49\% \times 204}{2 \times 144} = 34.7\%$. The atomic percentage of

Mo is calculated to be 5.7 at.%.

Calculation of the surface fraction of Mo₂C

From the integrated area of the anodic wave as shown in Fig. 5e, we derive a charge of Q = 15.896 C passed during the irreversible oxidation of Mo₂C to MoO₃ following a 16-electron process:^{1–3}

$$Mo_2C + 9H_2O \rightarrow 2MoO_3 + CO_3^{2-} + 18H^+ + 16e$$

$$n_{sruface} = \frac{Q}{nF} = \frac{15.896 C}{16 \times 96500} = 1.03 \times 10^{-5} mol$$

$$n_{total} = \frac{mw}{M_{w}} = \frac{0.00928 g \times 34.7\%}{203.88 g / mol} = 1.58 \times 10^{-5} mol$$

$$f = \frac{n_{sruface}}{n_{total}} = \frac{1.03 \times 10^{-5}}{1.58 \times 10^{-5}} = 65.2\%$$

Where n = 16 is the number of electron transferred, F is the Faraday constant, m is the mass of the self-supporting 3D Mo₂C/PCM-4 electrode, w is the weight fraction of Mo₂C obtained from TGA, M_w is the molecular weight of Mo₂C, and f is the exposed surface fraction of Mo₂C in 3D Mo₂C/PCM-4.

Fig. S1 TGA plots of 3D PCM and 3D Mo₂C/PCM-4 under the air atmosphere.

Fig. S2 TEM images of 3D PCM, viewed from [100], [110], and [111] directions and its corresponding fast Fourier transform (FFT) diffractograms.

Fig. S3 Optical photos of materials: (a) precursor of 3D PCM, (b) precursor of 3D Mo₂C/PCM-4, (c) comparison of 3D PCM and 3D Mo₂C/PCM-4, (d) 3D PCM, and (e) 3D Mo₂C/PCM-4.

As shown in Fig. S3a-b, the diameter of the two disc-shaped precursors are 11.00 mm. And after annealing treatment at 800 °C, the volume of the two shrinks to different degrees evidently (Fig. S3c). Specifically, the diameter of 3D PCM is 7.86 mm (Fig. S3d), while the diameter of 3D $Mo_2C/PCM-4$ is 8.44 mm (Fig. S3e). Thus, we believe that the rigid inorganic Mo species hindering the shrinkage of the precursor during the annealing treatment, resulting in a little peak shift in SAXS between 3D PCM and 3D $Mo_2C/PCM-4$.

Fig. S4 Hg intrusion curve and differential PSD of 3D PCM.

Fig. S5 Water contact angle measurements of 3D PCM powder and 3D Mo₂C/PCM-4 powder.

Fig. S6 (a) XPS Survey spectrum of 3D Mo₂C/PCM-4. (b) Fine spectrum of Mo 3d, and (c) high-resolution spectrum of C 1s. (d) Raman spectrum of 3D Mo₂C/PCM-4.

Fig. S7 TEM images of 3D Mo₂C/PCM-4.

Fig. S8 (a) TGA plots of 3D PCM and 3D Mo₂C/PCMs under the air atmosphere. (b) XRD patterns of 3D Mo₂C/PCMs.

Fig. S9 (a) SAXS patterns, (b) pore size distribution curves, and (c) N_2 sorption isotherms of 3D PCM and 3D Mo₂C/PCMs.

Fig. S10 Raman spectra of 3D PCM and 3D Mo₂C/PCMs.

Fig. S11 ($a_1 - a_3$) TEM images of 3D Mo₂C/PCM-1, ($b_1 - b_3$) TEM images of 3D Mo₂C/PCM-2, and ($c_1 - c_3$) TEM images of 3D Mo₂C/PCM-8.

Fig. S12 Polarization curves of 3D Mo₂C/PCM-4 recorded by staircase voltammetry (SCV) at a step height (ΔE) of 5 mV with different step period (τ) in 0.5 M H₂SO₄.

Fig. S13 Polarization curves of 3D Mo₂C/PCM-4 recorded by staircase voltammetry (SCV) at a step period (τ) of 10s with different step height (ΔE) in 0.5 M H₂SO₄.

Explanation of Fig. S12 and Fig. S13. Multiple SCV curves under different ΔE and different step periods to check the parameters of SCV method. Here, taking 3D Mo₂C/PCM-4 as the model sample, the curves were measured by SCV at a step height (ΔE) of 5 mV with different step period (τ), as shown in Fig. S12. When the step periods (τ) is too short ($\tau = 1, 2$ s), the charging current caused by electrical double layers cannot be effectively eliminated, thus the polarization curves are not smooth and stable. When the τ exceeds 4 s, the curves can be well stabilized, and there is no obvious

difference of curves among different τ . What's more, Fig. S13 displays the curves of at a fixed τ of 10 s with different ΔE . It is clear that in the ΔE range of 2 to 20 mV, a step period of 10 s is sufficient to stabilize the polarization curve. In summary, the experimental parameters we adopted in SCV method (a ΔE of 5 mV and a step period of 10 s) is reasonable and can help us to obtain genuine HER activity.

Fig. S14 Optical photo of reaction device with proton exchange membrane (inset: the as-made 3D Mo₂C/PCM disk electrode).

Fig. S15 CV curves of 3D Mo₂C/PCMs at different scan rates (2, 4, 6, 8, 10, 12, and 14 mV/s).

Fig. S16 (a) XRD pattern, (b) SEM image, and (c - f) TEM images of 3D Mo₂C/PCM-4 after the stability test.

Fig. S17 The XPS spectra of 3D Mo₂C/PCM-4 after long-time stability test: (a) XPS survey, (b) fine spectrum of Mo 3d and (c) high-resolution spectrum of C 1s.

Fig. S18 (a) The plot of measured H_2 volume versus time for 3D Mo₂C/PCM-4 at 300 mV. (b) Faradic efficiency test of 3D Mo₂C/PCM-4 by plotting experimental H_2 volume and theoretical H_2 volume against time at the current of 60 mA.

Fig. S19 Calibration of (a) a saturated calomel electrode (SCE) and (b) a mercury oxide electrode (Hg/HgO) potential using a reversible hydrogen electrode (RHE) by CV curve at scan rate of 2 mV/s in 0.5 M H₂SO₄ and 1.0 M KOH, respectively.

The potential of reference electrode was calibrated with respect to a reversible hydrogen electrode (RHE), which was performed in a high-purity H₂ (99.999%) saturated electrolyte with a Pt wire as the working electrode and counter electrode. And then cyclic voltammograms (CVs) were collected at a scan rate of 2 mV s⁻¹, and the average of the two potentials at which the current crossed zero was taken as the thermodynamic potential for the hydrogen electrode reactions. As shown in Fig. S19, in 0.5 M H₂SO₄, E(RHE) = E(SCE) + 0.263, and in 1.0 M KOH, E(RHE) = E (Hg/HgO) – 0.927, which were consistent with the result calculated by Nernst equation.

	Catalysts	\mathbf{S}_{BET}	D _{meso}	V _{total}	V _{mic}	Mo ₂ C content
		(m^2/g)	(nm)	(cm^3/g)	(cm^3/g)	(wt. %)
	3D PCM	695	4.8	0.375	0.175	0
	3D Mo ₂ C/PCM-1	532	5.6	0.347	0.146	20.5
	3D Mo ₂ C/PCM-2	378	5.6	0.254	0.106	29.7
	3D Mo ₂ C/PCM-4	321	5.6	0.234	0.089	34.7
	3D Mo ₂ C/PCM-8	215	5.6	0.158	0.051	47.5

Table S1 Textual parameters of 3D PCM and 3D Mo₂C/PCMs

Table S2 Summary of the HER activity of 3D Mo₂C/PCMs in 0.5 M H₂SO₄.

Catalvata	η_{10}	η_{100}	Tafel slope	j_0	C _{dl}	R _{ct}
Catalysis	(mV)	(mV)	(mV/decade)	(mA/cm^2)	(mF/cm^2)	(Ω)
3D Mo ₂ C/PCM-1	124	214	102	0.34	1177	14.8
3D Mo ₂ C/PCM-2	100	193	90	0.40	1285	6.2
3D Mo ₂ C/PCM-4	81	146	63	0.51	1649	1.7
3D Mo ₂ C/PCM-8	93	163	72	0.37	1302	2.6

Catalysts	Electrolytes	j	η	Tafel slope	Ref.	
5	5	(mA/cm^2)	(mV)	(mV/dec)		
3D Mo ₂ C/PCM	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	10	81	63	This work	
Mo ₂ C/CC	0.5 M H ₂ SO ₄	10	140	124	4	
Mo ₂ C-MoOx/CC	1.0 M HClO ₄	10	60	53	5	
Mo ₂ C nanoribbon/N-G	0.5 M H ₂ SO ₄	10	162	57	6	
Mo ₂ C@CC	0.5 M H ₂ SO ₄	10	106	54	7	
Mo ₂ C/G	$0.5 \mathrm{~M~H_2SO_4}$	10	166	80	8	
3DHP-Mo ₂ C	$0.5 \mathrm{~M~H_2SO_4}$	10	166	75	9	
np-η-MoC NSs	$0.5 \mathrm{~M~H_2SO_4}$	10	122	53	10	
vMo _x C-Ar-O150- <i>c</i>	$0.5 \mathrm{~M~H_2SO_4}$	10	130	-	11	
Mo ₂ C@N-CANs	0.5 M H ₂ SO ₄	10	82	66	12	
Mo ₂ C/G	$0.5 \ M \ H_2 SO_4$	10	175	88	8	
Mo ₂ C@OCM	$0.5 \mathrm{~M~H_2SO_4}$	10	160	51	1	
Mo ₂ C/G3-NCS	0.5 M H ₂ SO ₄	10	70	39	13	
Mo ₂ C-graphene	$0.5 \mathrm{~M~H_2SO_4}$	10	150	57	14	
Mo ₂ C/NCF	$0.5 \mathrm{~M~H_2SO_4}$	10	144	55	2	
Mo ₂ C@N-CNFs	0.5 M H ₂ SO ₄	10	167	70	15	
Mo ₂ C/GNRs	$0.5 \mathrm{~M~H_2SO_4}$	10	152	65	16	
Mo ₂ C@N-doped C	$0.5 \mathrm{~M~H_2SO_4}$	10	124	60	17	
Mo _x C@3D N-doped C	$0.5 \mathrm{~M~H_2SO_4}$	10	89	51	18	
Mo ₂ C/N-doped CNT	0.5 M H ₂ SO ₄	10	147	71	19	
Mo ₂ C microparticles	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	20	ca. 225	55	20	
MoC@graphite shell	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	10	124	43	21	
MoC _x octahedrons	$0.5 \mathrm{~M~H_2SO_4}$	10	142	53	22	
Mo ₂ C nanowires	$0.5 \ M \ H_2 SO_4$	10	130	53	23	
Mo ₂ C nanotubes	$0.5 \mathrm{~M~H_2SO_4}$	10	172	34	24	
MoCT _x (Mxenes)	0.5 M H ₂ SO ₄	10	283	-	25	
3D hierarchical porous Mo ₂ C	0.5 M H ₂ SO ₄	10	97	60	26	
Mo _x C-IOL	0.5 M H ₂ SO ₄	10	117	60	27	

 Table S3. Comparison of HER performance for 3D Mo₂C/PCM with other electrocatalysts in acidic electrolytes.

Catalysts	Electrolytes	j	η	Tafel slope	Ref.	
Cullipple	Licencitytes	(mA/cm^2)	(mV)	(mV/dec)		
3D Mo ₂ C/PCM	1.0 M KOH	10	47	45	This work	
Mo ₂ C/CC	1.0 M KOH	10	140	124	4	
Mo ₂ C-MoOx/CC	1.0 M KOH	10	60	53	5	
Mo _x C/Cu	1.0 M KOH	10	136	98.3	28	
Mo ₂ C nanoribbon/N-G	1.0 M KOH	10	162	57	6	
Mo ₂ C@CC	1.0 M KOH	10	72	52	7	
Mo ₂ C/G	1.0 M KOH	10	161	76	8	
Mo ₂ C/N-CNFs	1.0 M KOH	10	168	47	15	
np-η-MoC NSs	1.0 M KOH	10	119	39	10	
Mo ₂ C/NCF	1.0 M KOH	10	100	65	2	
Mo ₂ C/GNRs	1.0 M KOH	10	121	54	16	
Mo ₂ C@N-doped C	1.0 M KOH	10	78	41	17	
Mo ₂ C@3D N-doped C	1.0 M KOH	10	122	78	18	
3DHP-Mo ₂ C	1.0 M KOH	10	139	71	9	
vMo _x C-Ar-O150- <i>c</i>	1.0 M KOH	10	116	-	11	
Mo ₂ C@N-CANs	1.0 M KOH	10	100	76	12	
Mo ₂ C@MCS	1.0 M KOH	10	134	51	3	
Mo ₂ C/G	1.0 M KOH	10	200	82	8	
Mo ₂ C@OCM	1.0 M KOH	10	175	64	1	
Mo ₂ C microparticles	1.0 M KOH	10	210-240	5-59	20	
Mo ₂ C nanoparticles	1.0 M KOH	10	176	58	29	
MoC@graphite shell	1.0 M KOH	10	76	50	21	
MoC _x octahedrons	1.0 M KOH	10	151	59	22	
Mo ₂ C nanotubes	0.1 M KOH	10	117	55	24	
Skeletal Mo _x C	1.0 M KOH	10	101	44	30	
Mo _x C-IOL	0.1 M KOH	10	82	56	27	

 Table S4. Comparison of HER performance for 3D Mo₂C/PCM with other electrocatalysts in alkaline electrolytes.

 \dagger The yellow area represents self-supporting Mo_xC, the green area represents Mo_xC-carbon, and the light blue area represents nanosized Mo_xC.

References

- 1 J. Wang, W. Wang, L. Ji, S. Czioska, L. Guo and Z. Chen, *ACS Appl. Energy Mater.*, 2018, 1, 736–743.
- 2 Y. Huang, Q. Gong, X. Song, K. Feng, K. Nie, F. Zhao, Y. Wang, M. Zeng, J. Zhong and Y. Li, ACS Nano, 2016, 10, 11337–11343.
- 3 S. Yuan, S. Xu, Z. Liu, G. Huang, C. Zhang, J. Ai, X. Li and N. Li, *ChemCatChem*, 2019, 11, 2643–2648.
- 4 M. Fan, H. Chen, Y. Wu, L.-L. Feng, Y. Liu, G.-D. Li and X. Zou, *J. Mater. Chem. A*, 2015, **3**, 16320–16326.
- 5 L. He, W. Zhang, Q. Mo, W. Huang, L. Yang and Q. Gao, *Angew. Chemie Int. Ed.*, 2020, **59**, 3544–3548.
- 6 J. Gao, Z. Cheng, C. Shao, Y. Zhao, Z. Zhang and L. Qu, J. Mater. Chem. A, 2017, 5, 12027– 12033.
- 7 M. He, H. Shi, P. Wang, X. Sun and B. Gao, *Chem. A Eur. J.*, 2019, 25, 16106–16113.
- 8 H. Huang, C. Yu, H. Huang, W. Guo, M. Zhang, X. Han, Q. Wei, S. Cui, X. Tan and J. Qiu, *Small Methods*, 2019, **3**, 1900259.
- 9 T. Meng, L. Zheng, J. Qin, D. Zhao and M. Cao, J. Mater. Chem. A, 2017, 5, 20228–20238.
- 10 C. Tang, H. Zhang, K. Xu, Q. Zhang, J. Liu, C. He, L. Fan and T. Asefa, *J. Mater. Chem. A*, 2019, **7**, 18030–18038.
- 11 S. Kim, C. Choi, J. Hwang, J. Park, J. Jeong, H. Jun, S. Lee, S.-K. Kim, J. H. Jang, Y. Jung and J. Lee, ACS Nano, 2020, 14, 4988–4999.
- 12 Q. Kang, M. Li, Z. Wang, Q. Lu and F. Gao, *Nanoscale*, 2020, **12**, 5159–5169.
- H. Wei, Q. Xi, X. Chen, D. Guo, F. Ding, Z. Yang, S. Wang, J. Li and S. Huang, *Adv. Sci.*, 2018, 5, 1700733.
- 14 C. He and J. Tao, *Chem. Commun.*, 2015, **51**, 8323–8325.
- 15 Z.-Y. Wu, B.-C. Hu, P. Wu, H.-W. Liang, Z.-L. Yu, Y. Lin, Y.-R. Zheng, Z. Li and S.-H. Yu, NPG Asia Mater., 2016, 8, e288–e288.
- 16 X. Fan, Y. Liu, Z. Peng, Z. Zhang, H. Zhou, X. Zhang, B. I. Yakobson, W. A. Goddard, X. Guo, R. H. Hauge and J. M. Tour, ACS Nano, 2017, 11, 384–394.
- Y. Liu, G. Yu, G.-D. Li, Y. Sun, T. Asefa, W. Chen and X. Zou, *Angew. Chemie Int. Ed.*, 2015, 54, 10752–10757.
- 18 H. Zhang, Z. Ma, G. Liu, L. Shi, J. Tang, H. Pang, K. Wu, T. Takei, J. Zhang, Y. Yamauchi and J. Ye, NPG Asia Mater., 2016, 8, e293–e293.
- 19 K. Zhang, Y. Zhao, D. Fu and Y. Chen, J. Mater. Chem. A, 2015, 3, 5783–5788.
- 20 H. Vrubel and X. Hu, Angew. Chemie Int. Ed., 2012, 51, 12703–12706.
- 21 Z. Shi, Y. Wang, H. Lin, H. Zhang, M. Shen, S. Xie, Y. Zhang, Q. Gao and Y. Tang, J. Mater. Chem. A, 2016, 4, 6006–6013.
- 22 H. Bin Wu, B. Y. Xia, L. Yu, X.-Y. Yu and X. W. (David) Lou, *Nat. Commun.*, 2015, 6, 6512.
- 23 L. Liao, S. Wang, J. Xiao, X. Bian, Y. Zhang, M. D. Scanlon, X. Hu, Y. Tang, B. Liu and H. H. Girault, *Energy Environ. Sci.*, 2014, 7, 387–392.
- 24 F.-X. Ma, H. Bin Wu, B. Y. Xia, C.-Y. Xu and X. W. (David) Lou, Angew. Chemie Int. Ed., 2015, 54, 15395–15399.
- Z. W. Seh, K. D. Fredrickson, B. Anasori, J. Kibsgaard, A. L. Strickler, M. R. Lukatskaya, Y. Gogotsi, T. F. Jaramillo and A. Vojvodic, *ACS Energy Lett.*, 2016, 1, 589–594.

- 26 H. Ang, H. Wang, B. Li, Y. Zong, X. Wang and Q. Yan, *Small*, 2016, **12**, 2859–2865.
- 27 F. Li, X. Zhao, J. Mahmood, M. S. Okyay, S.-M. Jung, I. Ahmad, S.-J. Kim, G.-F. Han, N. Park and J.-B. Baek, ACS Nano, 2017, 11, 7527–7533.
- 28 Z. Wei, X. Hu, S. Ning, X. Kang and S. Chen, ACS Sustain. Chem. Eng., 2019, 7, 8458–8465.
- 29 L. Ma, L. R. L. Ting, V. Molinari, C. Giordano and B. S. Yeo, J. Mater. Chem. A, 2015, 3, 8361– 8368.
- 30 Y. Wang, Z. Shi, Q. Mo, B. Gao, B. Liu, L. Wang, Y. Zhang, Q. Gao and Y. Tang, *ChemElectroChem*, 2017, 4, 2169–2177.