Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.
This journal is © The Royal Society of Chemistry 2020

Supporting Information

Stretchable Solid-State Zinc Ion Battery Based on Cellulose Nanofiber-
Polyacrylamide Hydrogel Electrolyte and Mg0.23V205-1.0H20

Cathode
Wangwang Xu?, Chaozheng Liu®, Qinglin Wu® *, Weiwei Xie¢, Won-Young Kim¢,
Sang-Young Leed , and Jaegyoung Gwon®

aSchool of Renewable Natural Resources, Louisiana State University AgCenter, Baton

Rouge, Louisiana 70803, United States

b College of Materials Science and Engineering, Nanjing Forestry University, Nanjing,

China

¢ Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803,
United States

d Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 689-798, South Korea.

¢ Forest Products Department, National Institute of Forest Science, 57 Hoegiro,

Dongdaemun-gu, Seoul 02455, South Korea.

* Corresponding Author.
E-mail: qgwu@agcenter.lsu.edu (Q. Wu). Phone: 225-578-8369. Fax: 225-578-4251.



Figure S1. Photos of CNF and CNF-PAM solid-state electrolytes. (a) CNF dispersed in
the solution of 1 M Zn(CF3;SOs),; (b), (c) CNF-PAM prepared by the radical

polymerization.



Figure S2. Cross-section SEM image of CNF-PAM film.



Figure S3. SEM (a, b) and TEM (c, d) images of CNFs



Figure S4. SEM images of (a, b) freeze-dried PAM film and (c, d) freeze-dried CNF-
PAM films
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Figure S5. Stress—strain curves of CFC/PAM hydrogel film
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Figure S6. XRD pattern of V,05 - nH,0.
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Figure S7. Crystal structure of Mg ,3V,0s:1.0H,0 microspheres viewed from ¢ axis.



Figure S8. Crystal structure of Mgy,3V,051.0H,0 microspheres in (a) xy, and (b)
vanadium environments. The V atoms are shown by red ball, and O atoms are shown by

yellow balls.
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Figure S9. FTIR spectrum of Mg ,3V,05:1.0H,0O microspheres.



Figure S10. SEM images of V,05nH,0 nanowires.
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Figure S11. XPS spectrum of Mg ,3V,05°1.0H,0 microspheres. (a) XPS survey, high-
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Figure S12. TGA curve of the prepared Mg 13 V,05-1.0H,O microspheres.
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Figure S13. CV curves of MVO/Zn solid-state batteries during the first three cycles at
0.1 mV/s.
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Figure S14. Cycling performance of V,0s - nH,O at current density of 500 mA/g.
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Figure S15. Cycling performance at current density of10 A/g.



Figure S16. Optical photos of (a, b) CNF and (¢, d) CNF-PAM films



Figure S17. Optical photos of MVO/Zn solid-state ZIB with burning.
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Figure S18. Nyquist plots of solid-state MVO/Zn batteries using CNF-PAM film and
CNF film as electrolyte.
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Figure S19. The CV curve at 0.1 mV/s. (The shaded area shows the capacitive

contributions)
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Figure S20. GITT profiles of V,05-1.0H,0 based solid-state ZIBs, (e) diffusion versus

different Zn?" insertion/extraction states,
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Figure S21. XRD of MVO at initial and fully discharge states.
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Figure S22. XPS survey of Mg ,3V,05-1.0H,0 microspheres at different
charging/discharging states.



Figure S23. EDS mapping of Mg ,3V,05:1.0H,0 microspheres after fully discharge.
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Figure S24. Schematic illustrations of Zn?* storage during charge discharge process.



Table S1. Summary of electrochemical performance of cathode materials for solid-state

Z1Bs.
Cathode Operating Current Capacityfm  Cycle performance Ref.
voltage rate Ah/g]
Our MVO/Zn 0.2-1.6 V 5A/g 216 mAh/g  98.6% retention
solid-state after 2000 cycles
batteries 20 A/g 82.3 mAh/g 70 % retention after
12000 cycles
VS, 04-1.0V 02A/g 120 mAh/g 250 cycles [22]!
NH4V;05 02-14V 0.5A/g 133 mAh/g 200 cycles [23]?
MnO, 0.8-1.9V 0.131 A/g 1352 mAh/g 1000 cycles [247°
nanocrystallites
zinc 04-15V 4 Alg 125 mAh/g 2000 cycles [257¢
orthovanadate
MnO, 1.0-2.0V 1.3 Alg 127 mAh/g 1000 cycles [26]°
a-MnO, 0.9-2.0V 2.772 A/lg 100 mAh/g 1000 cycles [277°
MnO,/PEDOT 0.9-1.8V 1.11 A/g 280 mAh/g 300 cycles [2877
NaV;0¢1.5H, 0.3-1.25V 0.5A/g ~125 mAh/g 120 cycles [297®
0]
MnO, 09-19V 1.232 A/g 190 mAh/g 1000 cycles [307°
VS, 04-1.0V 0.5A/g 128 mAh/g 200 cycles, 91% of [3170
initial capacity
MoS, 03-1.5V 1 Alg ~150 mAh/g 500 cycles, 97.7% of [321"
initial capacity
MnO, 09-19V 0.924 A/g  ~150 mAh/g 100 cycles [33]"2
MnO, 09-1.8V 2.4 Alg 146 mAh/g 600 cycles, 87% of [34]"
initial capacity
FeHCF 023V 3A/g 57 mAh/g 100 cycles [35]
C00.247V,05° 0.6-22V 4 Alg 200 mAh/g 5500 cycles, 94.5% of [36]"

0.944H,0

initial cycle



NiCo

1220V 96 C 70 mAh/g 16000 cycles, 65% of [37]t¢

initial cycle

CoFe(CN) 0.75-2.0 V 2 Alg 110 mAh/g 2000 cycles [38]17

§ -MnO, 0.9-19V 10C ~100 mAh/g 55 cycles [39]'8
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