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Figure S1. Photos of CNF and CNF-PAM solid-state electrolytes. (a) CNF dispersed in 

the solution of 1 M Zn(CF3SO3)2; (b), (c) CNF-PAM prepared by the radical 

polymerization.



Figure S2.  Cross-section SEM image of CNF-PAM film.



Figure S3.  SEM (a, b)  and TEM (c, d)  images of CNFs



Figure S4. SEM images of (a, b) freeze-dried PAM film and (c, d) freeze-dried CNF-

PAM films 



Figure S5. Stress–strain curves of CFC/PAM hydrogel film
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Figure S6. XRD pattern of V2O5 ∙ nH2O.



Figure S7. Crystal structure of Mg0.23V2O5∙1.0H2O microspheres viewed from c axis.



Figure S8. Crystal structure of Mg0.23V2O5∙1.0H2O microspheres in (a) xy, and (b) 

vanadium environments. The V atoms are shown by red ball, and O atoms are shown by 

yellow balls.



Figure S9. FTIR spectrum of Mg0.23V2O5∙1.0H2O microspheres.



Figure S10. SEM images of V2O5∙nH2O nanowires.



Figure S11. XPS spectrum of Mg0.23V2O5∙1.0H2O microspheres. (a) XPS survey, high-

resolution XPS spectrum of (b) Mg 2s, (c) V2p, (d) O 1s.



Figure S12. TGA curve of the prepared Mg0.23V2O5∙1.0H2O microspheres.
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Figure S13. CV curves of MVO/Zn solid-state batteries during the first three cycles at 
0.1 mV/s.



Figure S14. Cycling performance of V2O5 ∙ nH2O at current density of 500 mA/g.
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Figure S15. Cycling performance at current density of10 A/g.



Figure S16. Optical photos of (a, b) CNF and (c, d) CNF-PAM films



Figure S17. Optical photos of MVO/Zn solid-state ZIB with burning.



Figure S18. Nyquist plots of solid-state MVO/Zn batteries using CNF-PAM film and 

CNF film as electrolyte.



Figure S19. The CV curve at 0.1 mV/s. (The shaded area shows the capacitive 

contributions) 



Figure S20. GITT profiles of V2O5∙1.0H2O based solid-state ZIBs, (e) diffusion versus 

different Zn2+ insertion/extraction states,



Figure S21. XRD of MVO at initial and fully discharge states. 



Figure S22. XPS survey of Mg0.23V2O5∙1.0H2O microspheres at different 

charging/discharging states.



Figure S23. EDS mapping of Mg0.23V2O5∙1.0H2O microspheres after fully discharge.



Figure S24. Schematic illustrations of Zn2+ storage during charge discharge process.



Table S1. Summary of electrochemical performance of cathode materials for solid-state 

ZIBs. 

Cathode Operating 

voltage

Current 

rate

Capacity[m

Ah/g]

Cycle performance Ref.

Our MVO/Zn 

solid-state 

batteries

0.2-1.6 V 5 A/g

20 A/g

216 mAh/g

82.3 mAh/g

98.6% retention 

after 2000 cycles

70 % retention after 

12000 cycles

VS2 0.4-1.0 V 0.2 A/g 120 mAh/g 250 cycles [22]1 

NH4V3O8 0.2-1.4 V 0.5 A/g 133 mAh/g 200 cycles [23]2

MnO2 

nanocrystallites

0.8-1.9 V 0.131 A/g 135.2 mAh/g 1000 cycles [24]3 

zinc

orthovanadate

0.4-1.5 V 4 A/g 125 mAh/g 2000 cycles [25]4 

MnO2 1.0-2.0 V 1.3 A/g 127 mAh/g 1000 cycles [26]5 

α-MnO2 0.9-2.0 V 2.772 A/g 100 mAh/g 1000 cycles [27]6 

MnO2/PEDOT 0.9-1.8 V 1.11 A/g 280 mAh/g 300 cycles [28]7

NaV3O8∙1.5H2

O

0.3-1.25 V 0.5 A/g ~125 mAh/g 120 cycles [29]8

MnO2 0.9-1.9 V 1.232 A/g 190 mAh/g 1000 cycles [30]9

VS2 0.4-1.0 V 0.5 A/g 128 mAh/g 200 cycles, 91% of 

initial capacity

[31]10

MoS2 0.3-1.5 V 1 A/g ~150 mAh/g 500 cycles, 97.7% of 

initial capacity 

[32]11

MnO2 0.9-1.9 V 0.924 A/g ~150 mAh/g 100 cycles [33]12

MnO2 0.9-1.8 V 2.4 A/g 146 mAh/g 600 cycles, 87% of 

initial capacity

[34]13

FeHCF 0-2.3 V 3 A/g 57 mAh/g 100 cycles [35]14

Co0.247V2O5∙ ⋅ 

0.944H2O

0.6-2.2 V 4 A/g 200 mAh/g 5500 cycles, 94.5% of 

initial cycle

[36]15 



NiCo 1.2-2.0 V 96 C 70 mAh/g 16000 cycles, 65% of 

initial cycle

[37]16

CoFe(CN)6 0.75-2.0 V 2 A/g 110 mAh/g 2000 cycles [38]17

δ-MnO2 0.9-1.9 V 10 C ~100 mAh/g 55 cycles        [39]18
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