Supporting Information

Stretchable Solid-State Zinc Ion Battery Based on Cellulose Nanofiber-

Polyacrylamide Hydrogel Electrolyte and Mg0.23V2O5·1.0H2O

Cathode

Wangwang Xu^a, Chaozheng Liu^b, Qinglin Wu^a, *, Weiwei Xie^c, Won-Young Kim^d,

Sang-Young Lee^d, and Jaegyoung Gwon^e

^a School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, Louisiana 70803, United States

^b College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, China

^c Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States

^d Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, South Korea.

 Forest Products Department, National Institute of Forest Science, 57 Hoegiro, Dongdaemun-gu, Seoul 02455, South Korea.

* Corresponding Author.

E-mail: qwu@agcenter.lsu.edu (Q. Wu). Phone: 225-578-8369. Fax: 225-578-4251.

Figure S1. Photos of CNF and CNF-PAM solid-state electrolytes. (a) CNF dispersed in the solution of 1 M $Zn(CF_3SO_3)_2$; (b), (c) CNF-PAM prepared by the radical polymerization.

Figure S2. Cross-section SEM image of CNF-PAM film.

Figure S3. SEM (a, b) and TEM (c, d) images of CNFs

Figure S4. SEM images of (a, b) freeze-dried PAM film and (c, d) freeze-dried CNF-PAM films

Figure S5. Stress-strain curves of CFC/PAM hydrogel film

Figure S6. XRD pattern of $V_2O_5 \cdot nH_2O$.

Figure S7. Crystal structure of $Mg_{0.23}V_2O_5$ ·1.0H₂O microspheres viewed from c axis.

Figure S8. Crystal structure of $Mg_{0.23}V_2O_5 \cdot 1.0H_2O$ microspheres in (a) xy, and (b) vanadium environments. The V atoms are shown by red ball, and O atoms are shown by yellow balls.

Figure S9. FTIR spectrum of $Mg_{0.23}V_2O_5$ ·1.0H₂O microspheres.

Figure S10. SEM images of V_2O_5 ·nH₂O nanowires.

Figure S11. XPS spectrum of Mg_{0.23}V₂O₅·1.0H₂O microspheres. (a) XPS survey, high-resolution XPS spectrum of (b) Mg 2s, (c) V2p, (d) O 1s.

Figure S12. TGA curve of the prepared $Mg_{0.23}V_2O_5$ ·1.0H₂O microspheres.

Figure S13. CV curves of MVO/Zn solid-state batteries during the first three cycles at 0.1 mV/s.

Figure S14. Cycling performance of $V_2O_5 \cdot nH_2O$ at current density of 500 mA/g.

Figure S15. Cycling performance at current density of10 A/g.

Figure S16. Optical photos of (a, b) CNF and (c, d) CNF-PAM films

Figure S17. Optical photos of MVO/Zn solid-state ZIB with burning.

Figure S18. Nyquist plots of solid-state MVO/Zn batteries using CNF-PAM film and CNF film as electrolyte.

Figure S19. The CV curve at 0.1 mV/s. (The shaded area shows the capacitive contributions)

Figure S20. GITT profiles of V₂O₅·1.0H₂O based solid-state ZIBs, (e) diffusion versus different Zn²⁺ insertion/extraction states,

Figure S21. XRD of MVO at initial and fully discharge states.

Figure S22. XPS survey of Mg_{0.23}V₂O₅·1.0H₂O microspheres at different charging/discharging states.

Figure S23. EDS mapping of $Mg_{0.23}V_2O_5$ ·1.0H₂O microspheres after fully discharge.

Figure S24. Schematic illustrations of Zn²⁺ storage during charge discharge process.

Cathode	Operating voltage	Current rate	Capacity[m Ah/g]	Cycle performance	Ref.
Our MVO/Zn	0.2-1.6 V	5 A/g	216 mAh/g	98.6% retention	
solid-state				after 2000 cycles	
batteries		20 A/g	82.3 mAh/g	70 % retention after 12000 cycles	
VS ₂	0.4-1.0 V	0.2 A/g	120 mAh/g	250 cycles	[22] ¹
$NH_4V_3O_8$	0.2-1.4 V	0.5 A/g	133 mAh/g	200 cycles	[23] ²
MnO ₂ nanocrystallites	0.8-1.9 V	0.131 A/g	135.2 mAh/g	1000 cycles	[24] ³
zinc orthovanadate	0.4-1.5 V	4 A/g	125 mAh/g	2000 cycles	[25]4
MnO ₂	1.0-2.0 V	1.3 A/g	127 mAh/g	1000 cycles	[26] ⁵
α-MnO ₂	0.9-2.0 V	2.772 A/g	100 mAh/g	1000 cycles	[27] ⁶
MnO ₂ /PEDOT	0.9-1.8 V	1.11 A/g	280 mAh/g	300 cycles	[28] ⁷
$NaV_3O_8 \cdot 1.5H_2$	0.3-1.25 V	0.5 A/g	~125 mAh/g	120 cycles	[29]8
MnO ₂	0.9-1.9 V	1.232 A/g	190 mAh/g	1000 cycles	[30]9
VS ₂	0.4-1.0 V	0.5 A/g	128 mAh/g	200 cycles, 91% of initial capacity	[31] ¹⁰
MoS ₂	0.3-1.5 V	1 A/g	~150 mAh/g	500 cycles, 97.7% of initial capacity	[32]11
MnO ₂	0.9-1.9 V	0.924 A/g	$\sim \! 150 \text{ mAh/g}$	100 cycles	[33] ¹²
MnO ₂	0.9-1.8 V	2.4 A/g	146 mAh/g	600 cycles, 87% of initial capacity	[34] ¹³
FeHCF	0-2.3 V	3 A/g	57 mAh/g	100 cycles	[35] ¹⁴
$Co_{0.247}V_2O_5$.	0.6-2.2 V	4 A/g	200 mAh/g	5500 cycles, 94.5% of initial cycle	[36] ¹⁵

Table S1. Summary of electrochemical performance of cathode materials for solid-stateZIBs.

NiCo	1.2-2.0 V	96 C	70 mAh/g	16000 cycles, 65% of	[37] ¹⁶
				initial cycle	
CoFe(CN) ₆	0.75-2.0 V	2 A/g	110 mAh/g	2000 cycles	[38]17
δ -MnO ₂	0.9-1.9 V	10 C	$\sim 100 \text{ mAh/g}$	55 cycles	[39] ¹⁸

Reference

- 1 Wang, Z. *et al.* A MOF-based single-ion Zn2+ solid electrolyte leading to dendrite-free rechargeable Zn batteries. *Nano Energy* **56**, 92-99 (2019).
- Lai, J., Tang, H., Zhu, X. & Wang, Y. A hydrated NH 4 V 3 O 8 nanobelt electrode for superior aqueous and quasi-solid-state zinc ion batteries. *Journal of Materials Chemistry A* 7, 23140-23148 (2019).
- 3 Wang, Z. *et al.* A flexible rechargeable zinc-ion wire-shaped battery with shape memory function. *Journal of Materials Chemistry A* **6**, 8549-8557 (2018).
- 4 Chao, D. *et al.* A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. *Advanced Materials* **30**, 1803181 (2018).
- 5 Zhang, S. *et al.* An adaptive and stable bio-electrolyte for rechargeable Zn-ion batteries. *Journal of Materials Chemistry A* **6**, 12237-12243 (2018).
- 6 Li, H. *et al.* An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. *Energy & Environmental Science* **11**, 941-951 (2018).
- 7 Zeng, Y. *et al.* Achieving Ultrahigh Energy Density and Long Durability in a Flexible Rechargeable Quasi-Solid-State Zn–MnO2 Battery. *Advanced Materials* **29**, 1700274 (2017).
- 8 Wan, F. *et al.* Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. *Nature communications* **9**, 1-11 (2018).
- 9 Wang, D. et al. A Nanofibrillated Cellulose/Polyacrylamide Electrolyte-Based Flexible and Sewable High-Performance Zn–MnO2 Battery with Superior Shear Resistance. Small 14, 1803978 (2018).
- 10 Jiao, T. *et al.* Binder-free hierarchical VS 2 electrodes for high-performance aqueous Zn ion batteries towards commercial level mass loading. *Journal of Materials Chemistry A* **7**, 16330-16338 (2019).
- 11 Li, H. *et al.* MoS2 nanosheets with expanded interlayer spacing for rechargeable aqueous Zn-ion batteries. *Energy Storage Materials* **19**, 94-101 (2019).
- 12 Liu, Z. *et al.* A mechanically durable and device-level tough Zn-MnO2 battery with high flexibility. *Energy Storage Materials* **23**, 636-645 (2019).
- 13 Mo, F. *et al.* A flexible rechargeable aqueous zinc manganese-dioxide battery working at-20° C. *Energy & Environmental Science* **12**, 706-715 (2019).
- 14 Yang, Q. *et al.* Activating C-Coordinated Iron of Iron Hexacyanoferrate for Zn Hybrid-Ion Batteries with 10 000-Cycle Lifespan and Superior Rate Capability. *Advanced Materials* **31**, 1901521 (2019).
- 15 Ma, L. *et al.* Achieving Both High Voltage and High Capacity in Aqueous Zinc-Ion Battery for Record High Energy Density. *Advanced Functional Materials* **29**, 1906142 (2019).

- 16 Huang, Y. *et al.* Solid-State Rechargeable Zn//NiCo and Zn–Air Batteries with Ultralong Lifetime and High Capacity: The Role of a Sodium Polyacrylate Hydrogel Electrolyte. *Advanced Energy Materials* **8**, 1802288 (2018).
- 17 Ma, L. *et al.* Achieving High-Voltage and High-Capacity Aqueous Rechargeable Zinc Ion Battery by Incorporating Two-Species Redox Reaction. *Advanced Energy Materials* **9**, 1902446 (2019).
- 18 Wang, D. *et al.* A Superior δ -MnO2 Cathode and a Self-Healing Zn- δ -MnO2 Battery. *ACS nano* **13**, 10643-10652 (2019).