1 Supporting Information

2 Enhanced Electrocatalytic Nitrogen Reduction Activity by

3 Incorporation of Carbon Layer on SnS Microflowers

4 Weikang Yu,^{1,2} Fenghao Shu,¹ Yifeng Huang,¹ Fangqi Yang,¹ Qiangguo Meng,¹ Zhi

5 Zou,¹ Jun Wang,^{1*} Zheling Zeng,¹ Guifu Zou,² Shuguang Deng ^{3*}

6

7

- 8 W. K. Yu, F. H. Shu, Y. f. Huang, F. Q. Yang, S. Zhu, Q. G. Meng, Z. Zou, Prof. J.
- 9 Wang, Prof. Q. Deng, Prof. Z. L. Zeng, Prof. S. G. Deng
- 10 School of Resource, Environmental and Chemical Engineering, Nanchang University,
- 11 No. 999 Xuefu Avenue, Jiangxi 330031, PR China
- 12 E-mail: jwang7@ncu.edu.cn (J. Wang)
- 13 E-mail: shuguang.deng@asu.edu (S. Deng)
- 14 W. K. Yu, Prof. G. F. Zou

15 Soochow Institute for Energy and Materials Innovations & Key Laboratory of

- 16 Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province,
- 17 Soochow University, Suzhou 215006, PR China.
- 18 Prof. S. G. Deng
- 19 School for Engineering of Matter, Transport and Energy, Arizona State University, 551
- 20 E.Tyler Mall, Tempe, AZ 85287, USA

- 22 *Corresponding author:
- 23 E-mail: jwang7@ncu.edu.cn (J. Wang);
- 24 E-mail: shuguang.deng@asu.edu (S. Deng)

30	Table	of	contents

31	Figure S1. TEM images of SnS@C and SnS microflowers
32	Figure S2. XRD patterns of SnS@C
33	Figure S3. High-resolution XPS spectra of Sn 3d and S 2p of SnS4
34	Figure S4. High-resolution XPS spectra of C 1s of SnS@C4
35	Figure S5. N_2 adsorption-desorption isotherms of carbon layer, SnS@C and SnS5
36	Figure S6. I-U curves of the SnS@C and SnS5
37	Figure S7. TGA curves of SnS@C and SnS6
38	Figure S8. Optical photograph of the two-compartment electrochemical cell6
39	Figure S9. Determination of the produced ammonia in 0.1 M Na ₂ SO ₄ 7
40	Figure S10. Determination of the produced hydrazine in 0.1 M Na ₂ SO ₄ 7
41	Figure S11. Determination of the produced ammonia in 0.1 M HCl8
42	Figure S12. Determination of the produced ammonia in 0.1 M KOH8
43	Figure S13. Determination of the NO_x in 0.1 M Na_2SO_4
44 45	Figure S14. The UV-Vis absorption spectra of the 0.1 M Na ₂ SO ₄ background and the purified N ₂ treated 0.1 M Na ₂ SO ₄ solution
46	Figure S15. Time-dependent current density curves for SnS@C9
47	Figure S16. NH ₃ yield rates and FEs of SnS at a series of potentials10
48	Figure S17. Gas chromatography spectra showing the detection of CO and H_{2} 10
49	Figure S18. NH ₃ yield rates and FE of SnS@C at various potentials in 0.1 M HCl11
50	Figure S19. NH_3 yield rates and FE of SnS@C at various potentials in 0.1 M KOH 11
51	Figure S20. The electrolyte contact angle measurements of SnS12
52	Figure S21. The CVs curves of SnS@C and SnS12

53 54	Figure S22. Five consecutive NRR electrolysis cycles at -0.50 V (vs. RHE) for 7200s in a 0.1 M Na ₂ SO ₄ solution13
55	Figure S23. Recycling results of SnS at -0.50 V (vs. RHE)
56	Figure S24. XRD pattern of SnS@C before and after stability test14
57	Figure S25. SEM images of SnS@C after stability test14
58	Figure S26. The FE of SnS@C vs. reaction time at -0.5 V15
59	Figure S27. The structure diagram of SnS@C15
60 61	Figure S28. Space-filling geometric structures of various intermediates of NRR pathway on SnS@C (111) surface
62	Figure S29. Free-energy diagrams of NRR process on SnS (111) surface16
63	Figure S30. Free-energy diagrams of HER process on SnS@C and SnS17
64 65	Figure S31. Top view of charge density difference of SnS@C and charge density difference of SnS@C after N ₂ adsorption on SnS (111) surface17
66 67	Figure TS1. The correction of zero point energy, enthalpy effect and entropy effect of the adsorbed and gaseous species
68	Figure TS2. Chemical compositions of SnS and SnS@C samples
69	Figure TS3. Chemical composition determined by elemental analyzer19
70 71	Figure TS4. Simulated values of fitted equivalent circuit resistances of SnS and SnS@C
72	Figure TS5. The comparable table of state-of-the-art NRR catalysts20
73	Reference 21

Figure S1. TEM images of SnS@C and SnS microflowers.

Figure S4. High-resolution XPS spectra of C 1s of a) SnS@C and b) SnS.

97 Figure S5. N₂ adsorption-desorption isotherms of the carbon layer, SnS@C, and SnS
98 at 77 K.

Figure S6. I-U curves of SnS@C and SnS at room temperature.

Figure S7. TGA curves of SnS@C and SnS under an Ar-air atmosphere.

Figure S8. Optical photograph of the gas-tight three-electrode configured two-116 compartment electrochemical cell.

Figure S9. Determination of the produced ammonia in 0.1 M Na₂SO₄. (a) UV-Vis absorption spectra of various NH₃ concentrations after avoid light incubated for 1 h at room temperature. (b) Corresponding calibration curves for the colorimetric NH₃ assay

121 using the indophenol blue method.

Figure S10. Determination of the produced hydrazine in 0.1 M Na₂SO₄. (a) UV-Vis absorption spectra of various N₂H₄ concentrations after incubated for 20 min at room temperature. (b) Corresponding calibration curves for the colorimetric N₂H₄ assay using the Watt-Chrisp method. (c) UV-Vis absorption spectra of the electrolytes stained with the Watt-Chrisp method before and after 7200s electrolysis at a series of potentials using SnS@C as the working electrode. (d) N₂H₄ concentrations at corresponding potentials.

Figure S11. Determination of the produced ammonia in 0.1 M HCl. (a) UV-Vis absorption spectra of various NH_3 concentrations after avoid light incubated for 2 h at room temperature. (b) Corresponding calibration curves for the colorimetric NH_3 assay using the indophenol blue method.

134

Figure S12. Determination of the produced ammonia in 0.1 M KOH. (a) UV-Vis absorption spectra of various NH_3 concentrations after avoid light incubated for 2 h at room temperature. (b) Corresponding calibration curves for the colorimetric NH_3 assay using the indophenol blue method.

Figure S13. Determination of the NO_x in 0.1 M Na_2SO_4 . (a) UV-Vis absorption spectra of various NO_x concentrations after incubated for 20 min at room temperature. (b) Corresponding calibration curves for the colorimetric NO_x assay using the N-(-1naphthyl) ethylenediamine dihydrochloride spectrophotometric method.

Figure S14. The UV-Vis absorption spectra of the $0.1 \text{ M Na}_2\text{SO}_4$ background and the purified N₂ treated $0.1 \text{ M Na}_2\text{SO}_4$ solution using an N-(-1-naphthyl) ethylenediamine dihydrochloride spectrophotometric method. The results show that no NO_x exists in the purified gas.

149

150

152

Figure S15. Time-dependent current density curves for SnS@C at the corresponding
different potentials for 7200 s in 0.1 M Na₂SO₄ solution.

155

Figure S17. Gas chromatography spectra showing the detection of CO and H₂.

Figure S18. NH₃ yield rates and FE of SnS@C at various potentials in 0.1 M HCl.

- **Figure S19.** NH₃ yield rates and FE of SnS@C at various potentials in 0.1 M KOH.

- Figure S20. The electrolyte contact angle measurements of SnS.

187 Figure S21. The CV curves of SnS@C and SnS collected at different scanning rates
188 from 20 to 120 mV s⁻¹.

Figure S22. Five consecutive NRR electrolysis cycles at -0.50 V (vs. RHE) for 7200s in a 0.1 M Na₂SO₄ solution. (a) Time-dependent current density curves of SnS@C. (b) UV-Vis absorption spectra of the electrolytes stained with the indophenol blue method (obtained by repeating electrolysis 5 times).

Figure S25. SEM images of SnS@C after stability test.

Figure S28. Space-filling geometric structures of various intermediates of the NRR
pathway on the SnS@C (111) surface. (The gray, white, blue, chocolate and yellow
balls represent C, H, N, Sn and S, respectively)

243 Figure S29. Free-energy diagrams of NRR process on SnS (111) surface (* denotes the

244 adsorption site)

242

Figure S30. Free-energy diagrams of HER process on SnS and SnS@C (* denotes the adsorption site).

249

Figure S31. Top view of a) Charge density difference of SnS@C; b) Charge density
difference of SnS@C after N₂ adsorption on SnS (111) surface. (Wathet and mazarine
blue isosurfaces represent charge accumulation and depletion, respectively)

ZPE (eV)	$\int C_P dT \ (eV)$	-TS (eV)
0.50	0.06	-0.10
0.77	0.09	-0.18
0.09	0.02	-0.03
0.39	0.03	-0.04
0.65	0.04	-0.07
0.85	0.10	-0.60
0.14	0.09	-0.40
0.27	0.09	-0.42
	ZPE (eV) 0.50 0.77 0.09 0.39 0.65 0.85 0.14 0.27	ZPE (eV) $\int C_P dT (eV)$ 0.500.060.770.090.090.020.390.030.650.040.850.100.140.090.270.09

Table S1. The correction of zero-point energy, enthalpy effect, and entropy effect ofthe adsorbed and gaseous species.

Samples	SnS	SnS@C
m _s /m _{Sn} ^a	0.286	0.285
n_s/n_{Sn}^a	1.05	1.03
n _s /n _{Sn} ^b	1.13	1.08
Sn ⁴⁺ /Sn ²⁺	1.88	0.74

 m_s/m_{Sn} is the mass ratio of the S and Sn on SnS and SnS@C;

 n_s/n_{Sn} is the molar ratio of S and Sn elements on SnS and SnS@C;

- ^a Results measured by EDX analysis;
- ^b Results measured by XPS analysis.

Table S2. Chemical compositions of SnS and SnS@C

	Samples	C %		Н %		S %	
_		before tests	after tests	before tests	after tests	before tests	after tests
-	SnS	4.2	4.26	0.84	0.94	21.68	20.86
-	SnS@C	7.07	7.14	1.15	1.22	20.8	20.62

 Table S3. Chemical composition determined by an elemental analyzer.

Samples	R_s/Ω	R_{ct}/Ω
SnS	78.73	236.48
SnS@C	34.57	120.25

283 Table S4. Simulated values of fitted equivalent circuit resistances of SnS and SnS@C.

Catalyst	System	NH ₃ yield rate	FE (%)	References
SnS@C microflowers	0.1 M Na ₂ SO ₄	7.95×10 ⁻¹¹ mol s ⁻¹ cm ⁻²	14.56	This work
Sn/SnS nanosheets	0.1 M PBS	3.89×10 ⁻¹¹ mol s ⁻¹ cm ⁻² (-0.8V)	6.5 (-0.7V)	1
SnO ₂ /RGO	0.1 M Na ₂ SO ₄	8.33×10 ⁻¹¹ mol s ⁻¹ cm ⁻²	7.1	2
Sn dendrite/Sn foil	0.1 M PBS	5.66×10 ⁻¹¹ mol s ⁻¹ cm ⁻²	3.67	3
NiCoS/C	0.1 M Li ₂ SO ₄	2.60 ug h ⁻¹ cm ⁻²	12.9	4
Co-FePS ₃ nanosheets	0.1 M KOH	90.6 ug h ⁻¹ mg _{cat} ⁻¹ (0.04 mg)	3.38	5
Fe-MoS ₂ /CC	0.1 M KOH	12.5 ug h ⁻¹ cm ⁻²	10.8	6
FeS ₂	0.1 M Na ₂ SO ₄	37.2 ug h ⁻¹ mg _{cat} ⁻¹ (0.2 mg)	11.2	7
CoS2@NC/CP	0.1 M HCl	17.45 ug h ⁻¹ mg _{cat} ⁻¹ (0.1 mg)	4.6	8
Porous Au film	0.1 M Na ₂ SO ₄	9.42 ug cm ⁻² h ⁻¹	13.36	9
WS ₂ /WO ₂	0.05 M H ₂ SO ₄	8.53 ug h ⁻¹ mg _{cat} ⁻¹ (0.02 mg)	13.5	10
Ni-Fe@MoS ₂	0.1 M Na ₂ SO ₄	128.17 ug h ⁻¹ mg _{cat} ⁻¹ (0.05 mg)	11.34 (40 °C)	11
Pd-Ag-S	0.1 M Na ₂ SO ₄	9.73 ug h ⁻¹ mg _{cat} ⁻¹ (0.1 mg)	18.41	12
MoS ₂ -rGO/CP	0.1 M LiClO ₄	24.82 ug h ⁻¹ mg ⁻¹	4.58	13
Ag ₃ Cu BPNs	0.1 M Na ₂ SO ₄	9.84 ug h ⁻¹ cm ⁻²	13.28	14
PTCA-rGO	0.1M HCl	24.7 ug h ⁻¹ mg ⁻¹	6.9	15

Mn ₃ O ₄	0.1 M Na ₂ SO ₄	11.6 ug h ⁻¹ mg ⁻¹	3.0	16
FePc/C	0.1 M Na ₂ SO ₄	137.95 ug mg_{FePc} ⁻¹ h ⁻¹	10.5	17
285				
286	Table S5. The compara	ble table of state-of-the-art NR	R catalysts.	
287				
288				

Reference

290 291	1.	P. Li, W. Fu, P. Zhuang, Y. Cao, C. Tang, A. B. Watson, P. Dong, J. Shen and M. Ye, <i>Small</i> , 2019, 15 , e1902535.
292 293	2.	K. Chu, Yp. Liu, Yb. Li, J. Wang and H. Zhang, <i>ACS Applied Materials & Interfaces</i> , 2019, 11 , 31806-31815.
294 295	3.	X. Lv, F. Wang, J. Du, Q. Liu, Y. Luo, S. Lu, G. Chen, S. Gao, B. Zheng and X. Sun, <i>Sustainable Energy & Fuels</i> , 2020, DOI: 10.1039/d0se00828a.
296 297	4.	X. Wu, Z. Wang, Y. Han, D. Zhang, M. Wang, H. Li, H. Zhao, Y. Pan, J. Lai and L. Wang, <i>Journal of Materials Chemistry A</i> , 2020, 8 , 543-547.
298 299	5.	H. Huang, F. Li, Q. Xue, Y. Zhang, S. Yin and Y. Chen, Small, 2019, 15, e1903500.
300 301	6.	X. Zhao, X. Zhang, Z. Xue, W. Chen, Z. Zhou and T. Mu, <i>Journal of Materials Chemistry A</i> , 2019, 7 , 27417-27422.
302 303	7.	H. Du, C. Yang, W. Pu, L. Zeng and J. Gong, <i>ACS Sustainable Chemistry & Engineering</i> , 2020, 8 , 10572-10580.
304 305	8.	P. Wei, H. Xie, X. Zhu, R. Zhao, L. Ji, X. Tong, Y. Luo, G. Cui, Z. Wang and X. Sun, <i>ACS Sustainable Chemistry & Engineering</i> , 2019, 8 , 29-33.
306 307	9.	H. Wang, H. Yu, Z. Wang, Y. Li, Y. Xu, X. Li, H. Xue and L. Wang, <i>Small</i> , 2019, 15 , 1804769.
308 309	10.	Y. Ling, F. M. D. Kazim, S. Ma, Q. Zhang, K. Qu, Y. Wang, S. Xiao, W. Cai and Z. Yang, <i>Journal of Materials Chemistry A</i> , 2020, 8 , 12996-13003.
310 311	11.	L. Zeng, X. Li, S. Chen, J. Wen, W. Huang and A. Chen, <i>Journal of Materials Chemistry A</i> , 2020, 8 , 7339-7349.
312 313	12.	H. Wang, S. Liu, H. Zhang, S. Yin, Y. Xu, X. Li, Z. Wang and L. Wang, <i>Nanoscale</i> , 2020, 12 , 13507-13512.
314 315	13.	X. Li, X. Ren, X. Liu, J. Zhao, X. Sun, Y. Zhang, X. Kuang, T. Yan, Q. Wei and D. Wu, <i>Journal of Materials Chemistry A</i> , 2019, 7 , 2524-2528.
316 317	14.	H. Yu, Z. Wang, D. Yang, X. Qian, You. Xu, X. Li, H. Wang, L. Wang, <i>Journal of Materials Chemistry A</i> , 2019, 7 , 20, 12526-12531.
318 319	15.	P. Li, J. Wang, H. Chen, X. Sun, J. You, S. Liu, Y. Zhang, M. Liu, X. Niu and Y. Luo, <i>Journal of Materials Chemistry A</i> , 2019, 7 , 12446-12450.
320 321	16.	X. Wu, L. Xia, Y. Wang, W. Lu, Q. Liu, X. Shi and X. Sun, <i>Small</i> , 2018, 14 , e1803111.

322 17. C. He, Z.-Y. Wu, L. Zhao, M. Ming, Y. Zhang, Y. Yi and J.-S. Hu, ACS
323 Catalysis, 2019, 9, 7311-7317.