Supplementary Information

Accelerating 2D MXenes Catalyst Discovery for Hydrogen Evolution Reaction by Computer-Driven Workflow and Ensemble Learning Strategy

Xiaoxu Wang^{1, 2, 5§}, Changxin Wang^{1, 3§}, Shinan Ci⁴, Yuan Ma^{1, 3}, Tong Liu⁵, Lei Gao^{1, 3}, Ping Qian^{1, 2*}, Chunlin Ji⁶, Yanjing Su^{1,3*}

¹Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China

²Department of Physics, University of Science and Technology Beijing, Beijing 100083, China ³Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China

⁴Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China

⁵Beijing Key Laboratory of Cloud Computing Key Technology and Application,

Beijing Computing Center, Beijing Academy of Science and Technology, Beijing 100094, China ⁶Kuang-Chi Institute of Advanced Technology, Shenzhen, Guangdong 518000, China

E-mail address: <u>qianping@ustb.edu.cn</u>, <u>yjsu@ustb.edu.cn</u>

Author contributions: §Xiaoxu Wang, Changxin Wang.

1.	H equilibrium coverage for 420 MXenes OBAs
2.	Crystal structures of MXenes OBAs with better catalytic activity than $Ti_3C_2O_2$ 4
3.	Band structures of MXenes OBAs with excellent catalytic activity than $Ti_3C_2O_2$ 6
4.	The activation barriers of H for $Ti_3C_2O_2$ and $Ti_2HfC_2O_2$
5.	Comparison of $\Delta E_{\rm H}$ calculated by GGA and GGA+U
6.	The process of AdaBoost model dimension reduction10
7.	Pearson correlation coefficient matrix for 41 primary features11
8.	Comparison of several typical machine learning models with 9:1 data split12
9.	Comparison of several typical machine learning models with 8:2 data split13
10.	Cross validation for several typical machine learning models14
11.	Cross validation for several typical machine learning models without Cr, Mo, W metals15
12.	TDOS and PDOS of Ti ₂ M' ₂ C ₃ O ₂ MXenes OBAs

Supplementary Tables

1.	List of all 41 primary features	.17
2.	2D MX enes OBAs with better catalytic activity than $Ti_3C_2O_2$.18

Supplementary Figures

Fig. S2. The structure information of $Ti_3C_2O_2$ and 22 MXenes OBAs with better catalytic activity than $Ti_3C_2O_2$. Lattice parameters are expressed in terms of *a*, and *L* in terms of layer thickness. The top and side views of all structures are listed in the order of $\Delta G_{\rm H}$.

Fig. S3. Band structure of $Ti_3C_2O_2$ and 22 MXenes OBAs with better catalytic activity than $Ti_3C_2O_2$.

Fig. S4. The activation barriers of H on HfC_2O_2 (a-b); $Ti_3C_2O_2$ (c-d). The "T-" represents the Tafel reaction while the "H-" typifies the Heyrovsky reaction. The inserted structure diagrams are the reaction of initial state (IS), the transition state (TS) and the final state (FS).

Fig. S5. Comparison of $\Delta E_{\rm H}$ calculated by GGA and GGA + U for Ti-monometallic MXenes. The corresponding U_{eff} values were set to 2.58 for the Ti element¹.

Fig. S6. The process of AdaBoost model dimension reduction and prediction accuracy evolution

Fig. S7. Pearson correlation coefficient matrix for selected 41 primary features with annotated correlation values.

Fig. S8. Comparison of several typical machine learning models for four H coverages with 9:1 data split.

Fig. S9. Comparison of several typical machine learning models for four H coverages with 8:2 data split.

Fig. S10. Cross validation for several typical machine learning models for four H coverages.

Fig. S11. Cross validation for several typical machine learning models for four H coverages without group-VIB $M_n X_{n+1}O_2$ (M = Cr, Mo, W; n = 1, 2, 3).

Fig. S12. TDOS and PDOS of Ti₂M'₂C₃O₂ MXenes OBAs.

Supplementary Tables

.

Table S1. 41 primary features of elemental and geometrical properties that are easily available in chemical repositories or calculated by faster DFT-PBE approach are considered. We have taken 5 DFT calculated properties, and standard deviation and mean of 22 properties, which result in total 63 features.

Symbol	Name	Symbol	Name	
<i>d</i> ₀₋₀	O-O distance in MXene	d _{O-M}	O-M distance in MXene	
L	Layer thickness	$\Delta e^{\rm O}$	O charge transfer	
d _{M-X}	M-X distance in MXene	$\chi p_{\rm M'}$	M' Pauling's electroneativity	
N _X	X atomic number	$N_{\mathbf{M}'}$	M' atomic number	
ra _{M'}	M' atomic radius	ri _{M'}	M' ionic radius	
EA _{M'}	M' electron affinity	TB _X	X boiling point	
V _{M'}	M' valence	P _X	X period table number	
V _X	X valence	M _X	X atomic mass	
EAX	X electron affinity	$\chi p_{\rm X}$	X Pauling's electroneativity	
IE _X	X first ionization potential	ra _X	X atomic radius	
TM _X	X melting point	$\chi p_{\rm M}$	M Pauling's electroneativity	
TB _M	M boiling point	TM _{M'}	M' melting point	
raM	M atomic radius	ri _M	M ionic radius	
rc _M	M crystal radius	TB _{M'}	M' boiling point	
<i>M</i> M'	M' atomic mass	$P_{\mathrm{M}'}$	M' period table number	
TM _M	M melting point	EA _M	M Electron affinity	
M _M	M atomic mass	IE _{M'}	M' first ionization potential	
P _M	M period table number	IE _M	M first ionization potential	
V _M	M valence	N _M	M atom number	
rc _X	X crystal radius	ri _X	X ionic radius	
rc _{M'}	M' crystal radius			

Table S2. 22 kinds of 2D MXenes OBAs with better catalytic activity than $Ti_3C_2O_2$. corresponding cohesive energy (E_c in eV), hydrogen adsorption energy (ΔE_H in eV), zero-point energy (E_{ZEP} in eV) and free Energy of hydrogen adsorption at equilibrium H coverage for HER (ΔG_H in eV)², and electronic character of MXenes (Metallic or Semiconducting). The '*half*' respect semimetal.

<i>NO</i> .	MXenes	Metallic	Ec	ΔE_{H}	EZEP	ΔG_{H}
1	Cr ₂ Mo ₂ N ₃ O ₂	yes	-4.456	-0.389	0.306	-0.013
2	$Cr_2VN_2O_2$	yes	-4.012	-0.385	0.304	-0.011
3	V ₂ NbCO ₂	yes	-5.530	-0.387	0.308	-0.009
4	$Sc_2Cr_2C_3O_2$	yes	-5.168	-0.377	0.298	-0.009
5	$Nb_2Hf_2N_3O_2$	yes	-6.289	-0.383	0.305	-0.008
6	$Ti_2HfC_2O_2$	yes	-5.972	-0.377	0.300	-0.006
7	$Mo_2WN_2O_2$	yes	-4.869	-0.365	0.293	-0.002
8	$V_2Cr_2N_3O_2$	yes	-4.062	-0.381	0.311	0.000
9	$Sc_2CrN_2O_2$	half	-4.688	-0.368	0.299	0.002
10	$V_2NbN_2O_2$	yes	-5.093	-0.379	0.311	0.002
11	$Ti_2TaC_2O_2$	yes	-6.189	-0.368	0.301	0.004
12	$V_2Cr_2C_3O_2$	yes	-5.198	-0.369	0.305	0.006
13	$Cr_2V_2N_3O_2$	yes	-4.587	-0.368	0.305	0.007
14	$Mo_2Sc_2C_3O_2$	yes	-5.476	-0.369	0.306	0.007
15	Nb ₂ TiN ₂ O ₂	yes	-5.722	-0.364	0.302	0.009
16	$W_2CrC_2O_2$	yes	-5.483	-0.365	0.304	0.009
17	$Cr_2NbN_2O_2$	yes	-4.186	-0.368	0.307	0.009
18	$Zr_2Cr_2C_3O_2$	yes	-5.663	-0.357	0.297	0.010
19	$Ti_2V_2N_3O_2$	yes	-5.696	-0.358	0.300	0.012
20	$Ti_2Ta_2N_3O_2$	yes	-6.259	-0.361	0.303	0.012
21	$V_2Hf_2N_3O_2$	yes	-5.774	-0.369	0.311	0.012
22	$Ti_2CrC_2O_2$	yes	-5.361	-0.356	0.299	0.013
23	Ti ₃ C ₂ O ₂	yes	-5.852	-0.355	0.298	0.013

Supplementary References

- Peng, Qiong, et al. Cu Single Atoms on Ti₂CO₂ as a Highly Efficient Oxygen Reduction Catalyst in a Proton Exchange Membrane Fuel Cell. J. Mater. Chem. A. 7, 26062–26070 (2019).
- Ling, C., Shi, L., Ouyang, Y., Wang, J. Searching for Highly Active Catalysts for Hydrogen Evolution Reaction Based on O-Terminated MXenes through a Simple Descriptor. Chem. Mater. 28, 9026-9032(2016).