Supplementary information for

Elucidation of the high-voltage phase in the layered sodium ion battery cathode material P3-

 $\mathrm{Na}_{0.5} \mathrm{Ni}_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}_{\mathbf{2}}$Jiatu Liu ${ }^{1}$, Christophe Didier ${ }^{2,3}$, Matthew Sale ${ }^{1}$, Neeraj Sharma ${ }^{4}$, Zaiping Guo ${ }^{3}$, Vanessa E. Peterson ${ }^{2,3}$, Chris D. Ling ${ }^{1}$
${ }^{1}$ School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
${ }^{2}$ Australian Centre for Neutron Scattering, ANSTO, Sydney, NSW 2232, Australia
${ }^{3}$ Institute for Superconducting \& Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia
${ }^{4}$ School of Chemistry, UNSW Australia, Sydney, NSW 2052, Australia

1, Figures and tables

Table S 1. Rietveld-refinement results against XRPD data for the pristine P3-type $\mathrm{Na}_{0.5} \mathrm{Ni}_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}_{2}$ powder synthesized at $650{ }^{\circ} \mathrm{C}$ corresponding to Figure 1 (a) in the main article. The atomic displacement parameters ($\mathrm{B}_{\text {iso }}$) for Mn and Ni were constrained to be the same. The $\mathrm{Ni}-\mathrm{Mn}$ occupancies were fixed due to the very similar X-ray scattering factors of Mn and Ni .

Atoms in P3 phase		y / b	z/c	Fractional occupancy	$\mathrm{B}_{\text {iso }}$
Na	0	0	0.1685(4)	0.259(3)	2.7(2)
0	0	0	0.6076(1)	1	0.23(5)
Mn	0	0	0	0.75	0.24(2)
Ni	0	0	0	0.25	0.24
Unit cell parameter	a/Å	c/Å	Weight ratio	Space group	$\mathrm{R}_{\text {B }}$
P3 phase	2.8723(1)	16.896(1)	96.4(1)\%	R-3m	2.38
NiO^{1}	4.1681(4)		3.6(1)\%	Fm-3m	2.24
R_{p}	5.18	R_{wp}	6.74	Gof	1.22
Stephen's	ζ	S_{400}	S_{202}	S_{004}	S_{301}
Model on P3	0.56	34703	64	12501	-2663

[^0]

Figure S 1. The honeycomb layer ordering used in the stacking-fault model. Only one TMO_{2} layer is shown. The Ni-rich site is green and the Mn-rich site is purple. Both the parent unit cell ($a=b \neq c$, $\alpha=8=90^{\circ}, \gamma=120^{\circ}$) and superstructure one-layer unit cell ($a^{\prime}=b^{\prime}=V 3 a \neq c^{\prime}=1 / 3 c, \alpha=8=90^{\circ}, \gamma=60^{\circ}$) are shown viewed along c axis. To fulfil the prismatic coordination environment for sodium ions between TMO_{2} layers, the stacking vector can only be one of the following in the one-layer supercell basis:
$(1 / 3,0,1),(-1 / 3,1 / 3,1),(0,-1 / 3,1)$
which leads to three types of layers with the same relative atomic configuration but different relative positions. The mutual transformation relationship of the three types of layers is summarized below:

To from	Type 1	Type 2	Type 3
Type 1	$(1 / 3,0,1)$	$(0,-1 / 3,1)$	$(-1 / 3,1 / 3,1)$
Type 2	$(-1 / 3,1 / 3,1)$	$(1 / 3,0,1)$	$(0,-1 / 3,1)$
Type 3	$(0,-1 / 3,1)$	$(-1 / 3,1 / 3,1)$	$(1 / 3,0,1)$

The stacking faults models used sufficiently large number of layers of TMO_{2} with the probability $\alpha(i, j)$ of finding type j layer next to type i layer as tabulated below:

| To | From | Type 1 | Type 2 |
| :--- | :--- | :--- | :--- | Type 3 | Type 1 | $\alpha 11$ | $\alpha 21$ |
| :--- | :--- | :--- |
| Type 2 | $\alpha 12$ | $\alpha 22$ |
| Type 3 | $\alpha 13$ | $\alpha 23$ |

In addition to the background, peak shape and crystallographic structure parameters, these stacking probabilities were refined in three different ways²:

Model 1, all probabilities equal to $1 / 3, \alpha(i, j)=1 / 3$. There is no extra refinable parameter.
Model 2, the probabilities of finding the same type at next layer are equivalent and the probabilities of finding different types at next layer are the same, $\alpha(1,1)=\alpha(2,2)=\alpha(3,3)=1-2 \alpha(i, j)$ for $i \neq j$. There is one extra refinable parameter.

Model 3, all probabilities are refinable.

[^1]

Figure S 2. NPD data and Rietveld-refined fits for P3-type $\mathrm{Na}_{0.5} \mathrm{Ni}_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}_{2}$ synthesized at $650^{\circ} \mathrm{C}$ without and with stacking faults models using FullProf and FAULTS software respectively. From top to bottom: Rietveld refinement without stacking faults model; refinements using Model 1 with all stacking parameters equal to $1 / 3$; and Model 2 with only one free stacking parameter.

Due to limitation of FAULTS software, the whole pattern was first refined without stacking faults using the FullProf software with three phases: P3, P2 and NiO. A small fraction of the P2 phase was tentatively added to the refinement model in the less-crystalline material for better FAULTS refinement. Peaks due to the minor NiO and P 2 phases were manually subtracted from the original data before they were fed into FAULTS. The stacking-faults model satisfactorily addressed the most pronounced broadened peaks marked by asterisks (*). The overall goodness-of-fit was substantially improved by stacking-fault Model 3 as discussed in the main article. Refinements details are presented in the following tables.

Table S 2. NPD Rietveld refinement results of less-crystalline P3-type $\mathrm{Na}_{0.5} \mathrm{Ni}_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}_{2}$ material without a stacking-fault model. The unit cell parameters of the $P 2$ phase were kept the same as the P3 phase, i.e., $a_{P 3}=a_{P 2}$ and $c_{P 3}=3 / 2 c_{P 2}$, because the P2 phase reflections are broad and heavily overlapped with those of $P 3$. Inclusion of the $P 2$ phase in the refinement model accounts for the peak intensity at $Q=0.48 \AA^{-1}$. However, the P2 phase is not observed in XRD data in the main article and only serves to feed FAULTS with more pure data. $\mathrm{B}_{\text {iso }}$ for Mn and Ni were constrained to be the same, and the Na z position was set to $1 / 6$ to avoid over-parameterization.

Atoms in P 3 phase	x / a	y / b	z / c	Fractional occupancy	$\mathrm{B}_{\text {iso }}$
Na	0	0	$1 / 6$	$0.38(3)$	$6.9(4)$
O	0	0	$0.3913(2)$	1	$1.54(4)$
Mn	0	0	0	0.78	$2.5(2)$
Ni	0	0	0	$0.22(1)$	2.5
Unit cell	a / \AA	Weight ratio	Space group	R_{B}	
parameter					
P 3 phase	$2.8729(2)$	$16.9064(1)$	$88.3(2) \%$	$\mathrm{R}-3 \mathrm{~m}$	12.0
P 2 phase ${ }^{3}$	-	-	$8(1) \%$	$\mathrm{P} 63 / \mathrm{mmc}$	33.5
NiO	$4.1597(3)$		$2.8(2) \%$	$\mathrm{Fm}-3 \mathrm{~m}$	10.6
R_{p}	4.8	R_{wp}	6.1	Gof	2.4
				χ^{2}	5.8

Table S 3. Comparison of different stacking-fault models. Ni/Mn mixing was set for the two Mn sites and one Ni sites in the honeycomb-ordered one-layer supercell. The refined compositions of the three models were all close to $\mathrm{Na}_{0.6} \mathrm{Ni}_{0.2} \mathrm{Mn}_{0.8} \mathrm{O}_{2}$, which differs slightly from our ICP results. The best goodness-of-fit obtained using Model 3 indicates that the stacking layer correlations extend further than next-nearest neighbors.

	Model 1	Model 2	Model 3
$a / \AA ̊$	4.9765(1)	4.9764(1)	4.9778(1)
c/Å	16.926(1)	16.926(1)	16.922(1)
Occ_Na	0.326(5)	0.329(5)	0.320(5)
$\mathrm{B}_{\text {iso_ }} \mathrm{Na}$	5.6(2)	5.5(2)	6.7(2)
Occ_Ni_1	0.617(3)	0.620(3)	0.597(3)
Occ_Ni_2	0.030(2)	0.029(2)	0.006(2)
$\mathrm{B}_{\text {iso_ }}$ TM	1.5(1)	1.5(1)	1.3(1)
z_O	0.0585(1)	0.0585(1)	0.0583(1)
$\mathrm{B}_{\text {iso_ }} \mathrm{O}$	1.50(1)	1.50(2)	1.52(2)
$\mathrm{D}_{\text {Lorentzian }}$	128(1)	129(1)	208(3)
$\alpha_{11} \alpha_{12} \alpha_{13}$	1/3 1/3 1/3	0.46(2) 0.270 .27	0.3(2) 0.3(2) 0.4(3)
$\alpha_{21} \alpha_{22} \alpha_{23}$	1/3 1/3 1/3	0.270 .460 .27	0.4(3) 0.2(2) 0.6(2)
$\alpha_{31} \alpha_{32} \alpha_{33}$	1/3 1/3 1/3	0.270 .270 .46	0.3(1) 0.3(1) 0(1)
R_{p}	4.23	4.23	4.04
χ^{2}	4.40	4.40	3.74

[^2]

Figure S 3. Lab XRPD pattern and Rietveld refinement of the highly crystalline P3-type $\mathrm{Na}_{0.5} \mathrm{Ni}_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}_{2}$ powder synthesized at $800^{\circ} \mathrm{C}$ with P2-type, NiO , and $\mathrm{NiMn}_{2} \mathrm{O}_{4}$ impurities. The latter two are electrochemically inactive. The small hump around $0.3 \AA^{-1}$ due to the glass capillary was excluded from the refinement.

Table S 4. Rietveld-refinement results against XRPD data for the highly crystalline P3-type $\mathrm{Na}_{0.5} \mathrm{Ni}_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}_{2}$ powder synthesized at $800^{\circ} \mathrm{C}$. $\mathrm{B}_{\text {iso }}$ for Mn and Ni were constrained to be the same.

Atoms in P3 phase		y/b	z/c	Fractional occupancy	$\mathrm{B}_{\text {iso }}$
Na	0	0	0.1684(5)	0.21(4)	1.4(2)
0	0	0	0.6062(2)	1	0.1(6)
Mn	0	0	0	0.75	0.07(2)
Ni	0	0	0	0.25	0.07
Unit cell parameter	a/Å	c/Å	Weight ratio	Space group	$\mathrm{R}_{\text {B }}$
P3 phase	2.8741(1)	16.943(1)	84.8(2) \%	R-3m	2.42
P2 phase	2.8744(2)	11.285(1)	11.7\%	P63/mmc	3.29
NiO	4.178(1)		0.7\%	Fm-3m	1.50
$\mathrm{NiMn} \mathrm{O}_{2}{ }_{4}{ }^{4}$	8.338(2)		2.8\%	Fd-3m	4.00
R_{p}	7.04	R_{wp}	9.50	Gof	1.27
Stephen's	Z	S_{400}	S_{202}	S_{004}	S_{301}
Model on P3	0.48	4422	9	7688	-2237

[^3]

Figure S 4. The most best "small box" models we employed to address the "stacking faults" peaks and their relationship with parent P3 type structure in space group R-3m. Only nickel (green) and manganese (purple) ions are shown to emphasize the honeycomb ordering. (a) Monoclinic model in space group $\mathrm{C} 2 / \mathrm{m}$ where the stacking vector is always one of the three aforementioned stacking vectors. (b) Trigonal model in space group $\mathrm{P} 3_{1} 12$ where the stacking vector moves among the three aforementioned stacking vectors. The crystallographic parameters are kept the same with the parent structure in the following affine transformation:

P3 (a b c P_{0}) \rightarrow Monoclinic model $\left(\mathrm{a}_{1} \mathrm{~b}_{1} \mathrm{c}_{1} \mathrm{Q}_{1}\right)$:
$\left(\begin{array}{l}a_{1} \\ b_{1} \\ c_{1} \\ Q_{1}\end{array}\right)=\left(\begin{array}{cccc}2 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ -2 / 3 & -1 / 3 & 1 / 3 & 0 \\ 0 & -1 / 2 & 0 & 1\end{array}\right)\left(\begin{array}{c}a \\ b \\ c \\ P_{0}\end{array}\right)$
P3 ($a \operatorname{bc} \mathrm{P}_{0}$) \rightarrow Trigonal model $\left(\mathrm{a}_{2} \mathrm{~b}_{2} \mathrm{c}_{2} \mathrm{Q}_{2}\right)$:
$\left(\begin{array}{l}a_{2} \\ b_{2} \\ c_{2} \\ Q_{2}\end{array}\right)=\left(\begin{array}{cccc}2 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 / 3 & 1 / 3 & 0 & 1\end{array}\right)\left(\begin{array}{c}a \\ b \\ c \\ P_{0}\end{array}\right)$
where P_{0} is the origin of $R-3 m$ structure, Q_{1} that of $C 2 / m$ structure and Q_{2} that of $P 312$ structure. Only the scale factor and one Lorentzian peak shape parameter are refined for both "small box" phases.

Figure S 5. Different refinement models we used to fit the NPD data of the highly crystalline P3-type $\mathrm{Na}_{0.5} \mathrm{Ni}_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}_{2}$ sample synthesized at $800^{\circ} \mathrm{C}$. (a) Rietveld refinements from top to bottom: without any stacking model or aforementioned "small box" phase; using a trigonal "small box" phase; and using a monoclinic "small box" phase. Both $\mathrm{P}_{1} 12$ and $\mathrm{C} 2 / \mathrm{m}$ seem to address the first broadened extra peak around $0.23 \AA^{-1}$ satisfactorily, but not the second broadened extra peak around $1.01 \AA^{-1}$ marked by an asterisk $\left(^{*}\right)$, which implies that high temperature induces the development of small domains of ordered phases scattered in the parent matrix. (b) Results of refinements from top to bottom: using stacking Model 1 with all stacking parameters equals to $1 / 3$; using Model 2 with only one free stacking parameter; and using Model 3 with all free stacking parameters. Contrary to the results in (a), all three stacking-fault models address the second but not the first broadened extra peak (marked *) satisfactorily. The best solution might lie somewhere between the "small box" model and the stacking fault-model, the development and details of which is beyond the scope of this research.

Table S 5. NPD Rietveld refinement results of the highly crystalline P3-type $\mathrm{Na}_{0.5} \mathrm{Ni}_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}_{2}$ sample without a stacking-fault model. The $\mathrm{B}_{\text {iso }}$ parameters of Mn and Ni are constrained to be the same. The Na z position is set to $1 / 6$ due to the strong correlation with its occupancy.

Atoms in P3 phase		y / b	z/c	Fractional occupancy	$\mathrm{B}_{\text {iso }}$
Na	0	0	1/6	0.360(4)	5.2(3)
0	0	0	0.3923(2)	1	1.22(3)
Mn	0	0	0	0.795	1.3(1)
Ni	0	0	0	0.205(1)	1.3
Unit cell parameter	a/Å	c/Å	Weight ratio	Space group	$\mathrm{R}_{\text {B }}$
P3 phase	2.8773(1)	16.9057(7)	79(1) \%	R-3m	9.2
P2 phase	2.8796(2)	11.290(1)	17.6(7)\%	P63/mmc	17.5
NiO	4.1765(2)		3.3(1)\%	Fm-3m	16.3
R_{p}	6.0	$\mathrm{R}_{\text {wp }}$	7.7	Gof	4.2
				χ^{2}	17.4

Table S 6. Comparison of R_{p} and χ^{2} among refinements using different models for the highly crystalline P3-type $\mathrm{Na}_{0.5} \mathrm{Ni}_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}_{2}$ sample synthesized at $800^{\circ} \mathrm{C}$.

	Rietveld		"small box" model		Stacking faults model	
	refinement	$\mathrm{P}_{1} 12$	$\mathrm{C} 2 / \mathrm{m}$	Model 1	Model 2	Model 3
R_{p}	6.0	5.7	5.4	5.6	5.6	4.6
χ^{2}	17.4	16.1	14.4	13.3	13.4	9.3

Figure S 6. The first cycle charging/discharging curve and corresponding dQ/dV curve of coin cell made up of highly crystalline P 3 -type $\mathrm{Na}_{0.5} \mathrm{Ni}_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}_{2}$ sample synthesized at $800^{\circ} \mathrm{C}$. Three pairs of redox peaks similar to those of P3-type $\mathrm{Na}_{0.5} \mathrm{Ni}_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}_{2}$ sample synthesized at $650^{\circ} \mathrm{C}$ are well resolved.

Figure S 7. (a) The GITT curve of the charging process of P3-type $\mathrm{Na}_{0.5} \mathrm{Ni}_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}_{2}$ sample synthesized at $650^{\circ} \mathrm{C}$ after 20 cycles at $10 \mathrm{mAh} / \mathrm{g}$ and (b) calculated diffusion coefficients at each titration steps. (c) The EIS data at different state of charge for the same material after 20 cycles and (d) linear fit of the low frequency data points, from which the diffusion coefficients are calculated to be $10^{-13.8}, 10^{-13.1}$ $, 10^{-13.1}, 10^{-13.9} \mathrm{~cm}^{2} / \mathrm{s}$ for $2.9,3.5,3.9,4.3 \mathrm{~V}$. One conspicuous difference between the EIS data of the fresh sample and that of the cycled sample is that the one semicircle of the fresh sample developed into at least two semicircles of the cycled sample in the high-medium frequency region, compared with Figure 2 in the main text. This indicates the formation of at least one extra interface that is ratelimiting. Of note is the absolute value of the impedance is not comparable between different coin cells.

Figure S 8. In situ PXRD (Mo K $\alpha, \lambda=0.71073 \AA$) data of the coin cell made from the highly crystalline P3-type $\mathrm{Na}_{0.5} \mathrm{Ni}_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}_{2}$ sample synthesized at $800^{\circ} \mathrm{C}$ charged at $10 \mathrm{~mA} / \mathrm{g}$ in $4.3-2.5 \mathrm{~V}$. The area of observation is covered and sealed by Kapton film. Only the $\mathrm{P} 3 \rightarrow \mathrm{O} 3$ transition is observed, probably due to the lack of sufficient mechanical compression in the area of observation.

Figure S 9. First cycle of hard carbon electrode vs. sodium pellets at $10 \mathrm{~mA} / \mathrm{g}(\mathrm{a})$ and first cycle of $\mathrm{Na}_{0.5} \mathrm{Ni}_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}_{2}$-hard carbon coin cell at $10 \mathrm{~mA} / \mathrm{g}$ with respect to the positive electrode (b).

Table S 7. Rietveld-refinement results against the initial in situ NPD pattern (a) in Figure 3 of the main article. $\mathrm{B}_{\text {iso }}$ parameter were all fixed to 1.0 and the z position and of fractional occupancy Na was fixed to avoid over-parameterization. Only the unit cell parameters and weight fractions were refined for the P 2 phase and aluminium.

Atoms in phase	P 3	x / a	y / b	z / c	Occupancy	$\mathrm{B}_{\text {iso }}$
Na	0	0	$1 / 6$	0.25	1.0	
O	0	0	$0.6063(5)$	1	1.0	
Mn	0	0	0	0.75	1.0	
Ni	0	0	0	0.25	1.0	
Unit	cell	a / \AA	c / \AA	Weight ratio	Space group	R_{B}
parameter						
P3 phase	$2.8724(3)$	$16.918(4)$	73%	$\mathrm{R}-3 \mathrm{~m}$	0.12	
Aluminium	$4.050(1)$		13%	$\mathrm{Fm}-3 \mathrm{~m}$	0.16	
P 2 phase	$2.878(2)$	$11.43(1)$	14%	$\mathrm{P} 63 / \mathrm{mmc}$	0.18	
R_{p}	0.31	R_{wp}	0.39	χ^{2}	1.0	

Table S 8. Refinement result against the in situ NPD pattern (b) in Figure 3 of the main article. Only the unit cell parameters and weight fractions were refined for the P3 phase. All parameters for P2 and aluminium were fixed.

Atoms in phase	O3	x/a	y / b	z/c	Fractional occupancy	$\mathrm{B}_{\text {iso }}$
Na		0	0	1/6	0.15	1.0
0		1/3	2/3	0.3935(4)	1	1.0
Mn		0	0	0	0.75	1.0
Ni		0	0	0	0.25	1.0
Unit parameter	cell	a/Å	c/Å	Weight ratio	Space group	$\mathrm{R}_{\text {B }}$
O3 phase		2.8555(3)	16.958(3)	54\%	R-3m	0.08
P3 phase		2.872(3)	16.34(4)	19\%	R-3m	0.11
R_{p}		0.31	R_{wp}	0.41	χ^{2}	1.1

Table S 9. Refinement result against the in situ NPD pattern (c) in Figure 3 of the main article. Only the unit cell parameters and weight fractions were refined for the P3 and O3 phases. The persistent presence of a P3 phase indicates that some amount of it is inactive, possibly due to the pouch cell assembly.

Atoms in O3s phase	x/a	y / b	z / c	Fractional occupancy	$\mathrm{B}_{\text {iso }}$
O	$1 / 3$	$2 / 3$	$0.4000(4)$	1	1.0
Mn	0	0	0	0.75	1.0
Ni	0	0	0	0.25	1.0
Unit parameter	cell	a/A	c/A	Weight ratio	Space group

Figure S 10. In situ NPD contour plot of the P3-type $\mathrm{Na}_{0.5} \mathrm{Ni}_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}_{2}$-hard carbon pouch cell cycled at $10 \mathrm{~mA} / \mathrm{g}$ between open circuit voltage and 4.16 V . This pouch never reached 4.3 V , probably due to moisture penetration. Nevertheless, the two-phase transformations from P3 to O3 to O3s are observed. Intensity is highest in red and lowest in blue.

Figure S 11. In situ NPD contour plot of P2-type $\mathrm{Na}_{0.5} \mathrm{Ni}_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}_{2}$-hard carbon pouch cell cycled at 10 mA / g between open circuit voltage and 4.1 V . This pouch never reached 4.3 V , again probably due to moisture infiltration into the pouch. The cycling curve shows typical staggered behavior above 4 V indicating the presence of water or water-assisted decomposition. Nevertheless, the intensity changes of the 013 reflection of P2-type is observed in the high-voltage region. Intensity is highest in red and lowest in blue.

Figure S 12. Rietveld refinement results for NPD data denoted in Figure S 10 and Figure S 11, i.e. the beginning (a), mid-stage (b) and final stage (c) of the charging process for the pouch cell made up of the P3-type $\mathrm{Na}_{0.5} \mathrm{Ni}_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}_{2}$ sample synthesized at $650^{\circ} \mathrm{C}$, and the beginning (d), the final stage in the first cycle (e) and in the second cycle (f) for the pouch cell made up of the P2-type $\mathrm{Na}_{0.5} \mathrm{Ni}_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}_{2}$ sample synthesized at $900^{\circ} \mathrm{C}$. Of note is that the second cycle (f) seems to reach a higher state of charge than the first cycle (e), as manifested in the sharper decrease of 013 reflection around 71° and emergence of a hump just before 013 reflection. Nevertheless both pouch cells were compromised by moisture infiltration. The quality of both data is inferior than that of the highly crystalline P3-type $\mathrm{Na}_{0.5} \mathrm{Ni}_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}_{2}$ sample synthesized at $800^{\circ} \mathrm{C}$. Red: observed. Blue: Rietveld fitted. Black: mismatch between the observed data and the fitted.

Figure S 13. Modelled vs. calculated energies (prior to relaxation) of random vs. the best sodium configurations of P3-type and O3-type $\mathrm{Na}_{0.5} \mathrm{Ni}_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}_{2}$, as predicted by a linear model,

$$
E=X \cdot \beta+\varepsilon .
$$

For P-type structures, $X_{P}=\left(1, x_{1}, x_{2}, \ldots, x_{8}\right) .\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ are the numbers of the $1^{\text {st }}$-nearest to the $4^{\text {th }}$. nearest in-plane Na-Na interactions. $\left(x_{5}, x_{6}, x_{7}, x_{8}\right)$ are the numbers of the $1^{\text {st }}$-nearest to the $4^{\text {th }}$-nearest interlayer Na -Ni interactions. For O-type structures, $X_{O}=\left(1, x_{1}, x_{2}, x_{3}\right) .\left(x_{1}\right)$ is the number of the $1^{\text {st_ }}$ nearest in-plane $\mathrm{Na}-\mathrm{Na}$ interaction. $\left(x_{2}, x_{3}\right)$ are the numbers of the $1^{\text {st-nearest to the } 2^{\text {nd }} \text {-nearest }}$ interlayer $\mathrm{Na}-\mathrm{Ni}$ interactions. Including more items (x) does not improve the model significantly. The coefficient values for P3-type models are $\beta_{P}=(-1005.9940,3.7006,0.4809,0.2665,-0.3771,-0.2461$, $-0.1271,-0.1322)$ and for $O 3$ type models are $\beta_{O}=(-1010.6492,0.4673,-0.2148,-0.1613)$. The error of the energy σ_{E} determined from statistical fitting is propagated as: $\sigma_{E}^{2}=\sum_{i, j}\left(\frac{\partial f}{\partial \beta_{i}}\right)\left(\frac{\partial f}{\partial \beta_{j}}\right) \sigma_{i j}$. The variance-covariance of β is $\sigma_{i j}$. The error predicted for one sigma is less than 0.15 eV for P type and 0.05 eV for O type structures per 48 formula units. The actual difference between energies calculated without relaxation and predicted are 0.2 eV for P-type and 0.18 eV for O-type structures per 48 formula units as shown in the inset-plots. However, the energy predicted by the linear model is adequate because the smallest energy difference given by Figure 6 in the main article is 0.01 eV per formula unit, which is larger than the error associated with the linear model.

P3Na1/2			
$1 \mathrm{~F}=-.10139901 \mathrm{E}+04 \mathrm{EO}=-.10139900 \mathrm{E}+04$	d E =-.215310E-03	mag=	132.0000
$1 \mathrm{~F}=-.10140418 \mathrm{E}+04 \mathrm{E} 0=-.10140418 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.411657 \mathrm{E}-04$	$\mathrm{mag}=$	131.9999
$1 \mathrm{~F}=-.10140052 \mathrm{E}+04 \mathrm{E} 0=-.10140050 \mathrm{E}+04$	$\mathrm{d} E=-.316647 \mathrm{E}-03$	mag=	132.0001
$1 \mathrm{~F}=-.10140262 \mathrm{E}+04 \mathrm{E}=-.10140261 \mathrm{E}+04$	d E =-.105549E-03	mag=	131.9999
$1 \mathrm{~F}=-.10140579 \mathrm{E}+04 \mathrm{E} 0=-.10140578 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.152211 \mathrm{E}-03$	$\mathrm{mag}=$	132.0000
$1 \mathrm{~F}=-.10140391 \mathrm{E}+04 \mathrm{E} 0=-.10140389 \mathrm{E}+04$	d E =-.393289E-03	$\mathrm{mag}=$	132.0003
$1 \mathrm{~F}=-.10140767 \mathrm{E}+04 \mathrm{E}=-.10140766 \mathrm{E}+04$	d E =-.237269E-03	mag=	131.9989
$1 \mathrm{~F}=-.10141359 \mathrm{E}+04 \mathrm{E} 0=-.10141357 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.294103 \mathrm{E}-03$	mag=	132.0002
$1 \mathrm{~F}=-.10141026 \mathrm{E}+04 \mathrm{E} 0=-.10141024 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.468245 \mathrm{E}-03$	mag=	132.0000
$1 \mathrm{~F}=-.10138604 \mathrm{E}+04 \mathrm{E}=-.10138603 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.268880 \mathrm{E}-03$	mag=	132.0001
$1 \mathrm{~F}=-.10139133 \mathrm{E}+04 \mathrm{E}=-.10139133 \mathrm{E}+04$	$\mathrm{d} E=-.695043 \mathrm{E}-04$	mag=	132.0001
$1 \mathrm{~F}=-.10138675 \mathrm{E}+04 \mathrm{E} 0=-.10138673 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.264493 \mathrm{E}-03$	mag=	132.0000
$1 \mathrm{~F}=-.10138969 \mathrm{E}+04 \mathrm{E} 0=-.10138969 \mathrm{E}+04$	$\mathrm{d} E=-.837589 \mathrm{E}-04$	mag=	132.0000
$1 \mathrm{~F}=-.10139301 \mathrm{E}+04 \mathrm{E}=-.10139301 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.863404 \mathrm{E}-04$	mag=	132.0000
$1 \mathrm{~F}=-.10139020 \mathrm{E}+04 \mathrm{E} 0=-.10139018 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.341621 \mathrm{E}-03$	mag=	132.0001
$1 \mathrm{~F}=-.10139363 \mathrm{E}+04 \mathrm{E} 0=-.10139356 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.140116 \mathrm{E}-02$	mag=	132.0000
$1 \mathrm{~F}=-.10139966 \mathrm{E}+04 \mathrm{E}=-.10139962 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.793693 \mathrm{E}-03$	mag=	132.0000
$1 \mathrm{~F}=-.10139543 \mathrm{E}+04 \mathrm{E}=-.10139534 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.170713 \mathrm{E}-02$	mag=	132.0000
$1 \mathrm{~F}=-.10138807 \mathrm{E}+04 \mathrm{E} 0=-.10138805 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.458862 \mathrm{E}-03$	mag=	132.0001
$1 \mathrm{~F}=-.10139262 \mathrm{E}+04 \mathrm{E}=-.10139262 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.122674 \mathrm{E}-03$	mag=	132.0000
$1 \mathrm{~F}=-.10138817 \mathrm{E}+04 \mathrm{E} 0=-.10138815 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.409755 \mathrm{E}-03$	$\mathrm{mag}=$	131.9991
$1 \mathrm{~F}=-.10139168 \mathrm{E}+04 \mathrm{E} 0=-.10139167 \mathrm{E}+04$	d E =-.328869E-03	mag=	132.0002
$1 \mathrm{~F}=-.10139426 \mathrm{E}+04 \mathrm{E} 0=-.10139425 \mathrm{E}+04$	$\mathrm{d} E=-.203611 \mathrm{E}-03$	mag=	132.0000
$1 \mathrm{~F}=-.10139161 \mathrm{E}+04 \mathrm{E}=-.10139158 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.581407 \mathrm{E}-03$	mag=	131.9999
$1 \mathrm{~F}=-.10139676 \mathrm{E}+04 \mathrm{E} 0=-.10139673 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.475693 \mathrm{E}-03$	mag=	132.0000
$1 \mathrm{~F}=-.10140207 \mathrm{E}+04 \mathrm{E} 0=-.10140204 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.486255 \mathrm{E}-03$	mag=	132.0000
$1 \mathrm{~F}=-.10139796 \mathrm{E}+04 \mathrm{E}=-.10139794 \mathrm{E}+04$	$\mathrm{d} E=-.516477 \mathrm{E}-03$	mag=	132.0000
O3Na1/2			
$1 \mathrm{~F}=-.10085256 \mathrm{E}+04 \mathrm{E}=-.10085251 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.931381 \mathrm{E}-03$	mag=	131.9999
$1 \mathrm{~F}=-.10085693 \mathrm{E}+04 \mathrm{E}=-.10085687 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.110664 \mathrm{E}-02$	mag=	132.0000
$1 \mathrm{~F}=-.10085731 \mathrm{E}+04 \mathrm{E}=-.10085725 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.114438 \mathrm{E}-02$	mag=	131.9999
$1 \mathrm{~F}=-.10084429 \mathrm{E}+04 \mathrm{E}=-.10084427 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.409533 \mathrm{E}-03$	mag=	132.0001
$1 \mathrm{~F}=-.10084912 \mathrm{E}+04 \mathrm{E}=-.10084909 \mathrm{E}+04$	d $\mathrm{E}=-.606977 \mathrm{E}-03$	$\mathrm{mag}=$	131.9999
$1 \mathrm{~F}=-.10084906 \mathrm{E}+04 \mathrm{E}=-.10084901 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.891918 \mathrm{E}-03$	mag=	131.9999
$1 \mathrm{~F}=-.10085583 \mathrm{E}+04 \mathrm{E}=-.10085579 \mathrm{E}+04$	d E =-.779616E-03	mag=	131.9999
$1 \mathrm{~F}=-.10086168 \mathrm{E}+04 \mathrm{E} 0=-.10086164 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.807193 \mathrm{E}-03$	mag=	131.9998
$1 \mathrm{~F}=-.10086161 \mathrm{E}+04 \mathrm{E}=-.10086144 \mathrm{E}+04$	$\mathrm{d} E=-.328075 \mathrm{E}-02$	mag=	132.0009
$1 \mathrm{~F}=-.10085264 \mathrm{E}+04 \mathrm{E}=-.10085259 \mathrm{E}+04$	d E =-.974805E-03	mag=	131.9999
$1 \mathrm{~F}=-.10085700 \mathrm{E}+04 \mathrm{E} 0=-.10085695 \mathrm{E}+04$	$\mathrm{d} E=-.101118 \mathrm{E}-02$	$\mathrm{mag}=$	131.9999
$1 \mathrm{~F}=-.10085733 \mathrm{E}+04 \mathrm{E} 0=-.10085726 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.121692 \mathrm{E}-02$	mag=	131.9999
$1 \mathrm{~F}=-.10084432 \mathrm{E}+04 \mathrm{E}=-.10084430 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.462095 \mathrm{E}-03$	mag=	132.0002
$1 \mathrm{~F}=-.10084913 \mathrm{E}+04 \mathrm{E}=-.10084911 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.526536 \mathrm{E}-03$	$\mathrm{mag}=$	131.9999
$1 \mathrm{~F}=-.10084903 \mathrm{E}+04 \mathrm{E}=-.10084898 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.944142 \mathrm{E}-03$	mag=	131.9999
$1 \mathrm{~F}=-.10085636 \mathrm{E}+04 \mathrm{E} 0=-.10085632 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.858161 \mathrm{E}-03$	$\mathrm{mag}=$	131.9997
$1 \mathrm{~F}=-.10086219 \mathrm{E}+04 \mathrm{E}=-.10086215 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.776825 \mathrm{E}-03$	$\mathrm{mag}=$	131.9998
$1 \mathrm{~F}=-.10086207 \mathrm{E}+04 \mathrm{E}=-.10086192 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.317019 \mathrm{E}-02$	mag=	132.0002
$1 \mathrm{~F}=-.10084564 \mathrm{E}+04 \mathrm{E}=-.10084538 \mathrm{E}+04$	$\mathrm{d} E=-.520970 \mathrm{E}-02$	mag=	131.9998
$1 \mathrm{~F}=-.10085196 \mathrm{E}+04 \mathrm{E} 0=-.10085179 \mathrm{E}+04$	$\mathrm{d} \mathrm{E}=-.335729 \mathrm{E}-02$	mag=	131.9999
$1 \mathrm{~F}=-.10085315 \mathrm{E}+04 \mathrm{E} 0=-.10085310 \mathrm{E}+04$	$\mathrm{d} E=-.963174 \mathrm{E}-03$	mag=	131.9999
$1 \mathrm{~F}=-.10083762 \mathrm{E}+04 \mathrm{E}=-.10083742 \mathrm{E}+04$	d $E=-.396914 \mathrm{E}-02$	$\mathrm{mag}=$	132.0001
$1 \mathrm{~F}=-.10084443 \mathrm{E}+04 \mathrm{E}=-.10084431 \mathrm{E}+04$	$\mathrm{d} E=-.237014 \mathrm{E}-02$	mag=	131.9999
$1 \mathrm{~F}=-.10084521 \mathrm{E}+04 \mathrm{E}=-.10084518 \mathrm{E}+04$	$\mathrm{d} E=-.582400 \mathrm{E}-03$	mag=	132.0004
$1 \mathrm{~F}=-.10084763 \mathrm{E}+04 \mathrm{E}=-.10084727 \mathrm{E}+04$	$\mathrm{d} E=-.718011 \mathrm{E}-02$	mag=	131.9999
$1 \mathrm{~F}=-.10085538 \mathrm{E}+04 \mathrm{E} 0=-.10085513 \mathrm{E}+04$	$\mathrm{d} E=-.508566 \mathrm{E}-02$	mag=	131.9999
$1 \mathrm{~F}=-.10085609 \mathrm{E}+04 \mathrm{E} 0=-.10085591 \mathrm{E}+04$	$\mathrm{d} E=-.359173 \mathrm{E}-02$	mag=	131.9999

Box S 1. Calculated energies and total magnetic moment of the best Na configurations in P3-type and O3-type $\mathrm{Na}_{0.5} \mathrm{Ni}_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}_{2}$ ($4 \times 4 \times 1$ supercell, 48 formula) corresponding to those in Figure S 13 . The total magnetic moment of each structure keeps at $2 \times 12(\mathrm{Ni})+3 \times 36(\mathrm{Mn})=132$ (corresponding to ferromagnetic), irrelevant to the sodium configuration and P3/O3 type. The total magnetic moments of the final P-O series structures are 132, 129, 126, 123, 120, 117, 108 for 48 formula P3Na1/2, $\mathrm{P} 3 \mathrm{Na} 7 / 16, \mathrm{P} 3 \mathrm{Na} 3 / 8, \mathrm{O} 3 \mathrm{Na} 5 / 16, \mathrm{O} 3 \mathrm{Na} 1 / 4, \mathrm{O} 3 \mathrm{Na} 3 / 16, \mathrm{O} \mathrm{NaO}$, which reflects the fractional desodiation process with the number of unpaired electrons reduced. All structures are stable in ferromagnetic state.

Figure S 14. Effective U-J values calculated for the P-O series using the linear response method ${ }^{5}$. Namely, a small perturbation $(d v)$ is added on an arbitrary $\mathrm{Ni} / \mathrm{Mn}$ atom for self-consistent (SF) and non-self-consistent (NSF) electron densities change ($d n$) on that atom to be calculated. The effective interaction parameter U-J values, or simply U values are estimated through:

$$
U=(d v / d n)_{N S F}-(d v / d n) S F
$$

[^4]

Figure S 15. Calculated structures viewed along a axis after ionic relaxation of the $\mathrm{P}-\mathrm{O}$ series. See main text for an explanation of the notation. From left: O3Na0, O3Na3/16, O3Na1/4, O3Na5/16, P3Na3/8, P3Na7/16, P3Na1/2. Oxygen (red), transition metal (purple), sodium (yellow).

Figure S 16. Accumulated densities-of-states for the P-O series showing how the "band top" ranges of states were chosen.

Figure S 17. O K-edge X-ray absorption spectra of pristine and charged samples. Linear backgrounds were subtracted according to the 510-520 eV signals and normalizations were done afterwards.

Figure S 18. Lab XRD data and Rietveld refinement of the ex situ samples of the P3-type $\mathrm{Na}_{0.5} \mathrm{Ni}_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}_{2}$ material at state of charge $4.3 \mathrm{~V}(\mathrm{a})$ and 2.5 V (b) vs. $\mathrm{Na}^{+} / \mathrm{Na}$ after 20 cycles at 10 mA / g, with the main relevant phase being O 3 and P 3 phase separately. A small amount of residue O3s phase is found at 4.3 V but not 2.5 V , even though the electrochemical reaction $03 \rightarrow$ O3s is thought to disappear as shown in the Figure 2(b) in the main article. This shows that $03 \rightarrow$ O3s reaction might still be achievable, but with growing polarization. All reflections show larger FWHM than those of the pristine samples, implying decrease in crystallinity or/and increase in strain.

Figure S 19. Time evolution of lab XRD data of the ex situ samples of the P3-type $\mathrm{Na}_{0.5} \mathrm{Ni}_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}_{2}$ material at state of charge 4.3 V vs. $\mathrm{Na}^{+} / \mathrm{Na}$ after 20 cycles at $10 \mathrm{~mA} / \mathrm{g}$. All data were collected consecutively from bottom to top, with each data collected for an hour. Although the ex situ sample was sealed with Kapton tape and glue, the moisture somehow managed to infiltrate into the seal and transform the mixture of O3-O3s phases into a single phase of P3' phase with much greater interlayer spacing ($a=2.86 \AA \AA, c=21.46 \AA$ as a preliminary refinement).

Figure S 20. Unit cells of relaxed structures of O 2 dimer (a), MnO (b) and NiO (c) in antiferromagnetic configuration. The primitive cells containing 2 formula of MnO or NiO for calculation are also shown.

Figure S 21. Different types of one oxygen vacancy models $\left(\mathrm{O}_{\mathrm{vac}}-1,2,3\right)$, one oxygen vacancy one transition metal vacancy model derived from $\mathrm{O}_{\mathrm{Vac}}-1\left(\mathrm{O}_{\mathrm{Vac}}-1-\mathrm{TM}_{\mathrm{Vac}}-1,2,3\right)$, two oxygen vacancies one transition metal vacancy model derived from $\mathrm{O}_{\mathrm{Vac}}-1-\mathrm{TM}_{\mathrm{Vac}}-3\left(\mathrm{O}_{\mathrm{Vac}}-1-\mathrm{TM}_{\mathrm{Vac}}-3-\mathrm{O}_{\mathrm{Vac}}-1,2,3,4,5\right)$ are viewed along c axis with one layer of TMO_{2} displayed (Red: O ; purple: Mn ; Grey: Ni).

Table S 10. Bond valence sum (BVS) maps for the P-O series structures. See main text for an explanation of the notation. Migration species are listed. Note that a calculated Na^{+}BVS map for the O3NaO structure containing no Na is meaningless; however, Ni^{2+} and Ni^{4+} BVS maps for O 3 NaO and corresponding BVELS could be calculated. The isosurface value of each BVS map is the mobile ion's valence.

Table S 11. Bond valence energy landscapes for the P-O series structures. See main text for an explanation of the notation. Minimum energies $E_{\text {min }}$ and minimum percolation energies $E_{p c l}$ are listed. Note that a calculated Na^{+}BVELs for the O 3 NaO structure containing no Na is meaningless; however, Ni^{2+} and Ni^{4+} BVELs for O 3 NaO structure could be calculated. The isosurface value of each BVEL is $E_{\text {min }}$ $+E_{p c l}(e V)$.

20030008		8	
20000950	200000050	200000096	
2090909090	$\underline{09000909}$	20090009	sosesese
2005000\%	20000030	200000\%	sessost.
\bigcirc	\bigcirc	-	
\times	-2		
		-	
Sosesex.	Sose	Hososots.	soos

$\underline{\text { 2, Mathematical proof of the effective equivalence and relationship between our simple linear model }}$ and the cluster expansion method

We start with the following mathematical description of the energy of a system based on the cluster expansion method taken from ${ }^{6}$:
$E^{C E}(\sigma)=\bar{\Pi}(\sigma) \cdot J^{C E}=\sum_{\alpha} \bar{\Pi}_{\alpha}(\sigma) J_{\alpha}^{C E}$
$\sigma_{i} \in 1,-1$
$-1 \leq \bar{\Pi}_{\alpha}(\sigma) \leq 1$
Where $E^{C E}$ is the energy according to the cluster expansion method, σ is the ionic configuration, α is the type of cluster expansion configuration (referring to a specific type of cluster configuration), $\bar{\Pi}_{\alpha}(\sigma)$ refers to the so-called correlation matrix elements which accounts for the multiplicity of different types of configurations and J_{α} refers to the 'effective interaction strength' of each different type of cluster. The individual components of the occupancy vector σ_{i} have values of 1 and -1 representing occupancy and non-occupancy or two different types of occupancy respectively.

This equation is very similar to the simple linear model described in the main paper for calculating the energy as shown below. If we start from the linear regression equation, substitute in the new variable names from above and then neglect errors, we can write:
$E^{L M}(\mu)=X(\mu) \cdot \beta+\varepsilon(\mu) \cong N X(\mu) \cdot J^{L M}=N \sum_{\alpha} X_{\alpha}(\mu) J_{\alpha}^{L M}$
$\beta=N J^{L M}$
$\mu_{i} \in 0,1$
Where $E^{L M}$ refers to the energy predicted by the linear model, $X_{\alpha}(\mu)$ refers to the count of the number of interactions of cluster type α divided by N in the given configuration μ and $J_{\alpha}^{L M}$ refers to the 'effective interaction strength' of each different type of cluster as above. N is a scaling factor which represents the total number of partially occupant sites in the system and is defined in the same way as for the cluster expansion method. This scaling factor is introduced to further improve the similarity between these two methods. $N J_{\alpha}^{L M}$ is equivalent to β from the main text. In this case, a different notation is used for the occupancy vector μ in that the values of 1 and 0 are used to represent occupancy and vacancy respectively, or in the case of $\mathrm{Ni} / \mathrm{Mn}$ sites, occupancy of the site by a nickel or manganese atom respectively.

Both $X_{\alpha}(\mu)$ and $\bar{\Pi}_{\alpha}(\sigma)$ are sums over different types of cluster configurations but are defined slightly differently as described below. In our model, we only considered a linear model which includes diatomic interactions between neighbours as well as the total energy of the structure. We can write the equation for $X_{\alpha}(\mu)$, the total number of interactions divided by N, as follows:
$X_{\alpha}(\mu)=\frac{1}{N} \sum_{\alpha \equiv \gamma i \in \gamma} \prod_{i} \mu_{i}$
$\mu_{i} \in 0,1$
$\alpha \supset \gamma$

[^5]In this notation, γ is an individual cluster of type α consisting of a group of specific atoms. In this notation, the inner multiplication runs over the positions in an individual cluster γ of type α and the outer summation performs addition of all clusters of type α over the whole crystal structure. In this case, only fully occupied clusters of type γ actually contribute to the total summation as they have no zeros. These formulas for the contents of the linear model equations include the N scaling factor which compensates for the total number of particles in a unit cell or chemical formula and also improves mathematical agreement between the cluster expansion and linear model methods.

The cluster expansion correlation matrix is defined in a slightly different way which is more salient for use in further studies of statistical mechanics as follows:
$\bar{\Pi}_{\alpha}(\sigma)=\frac{1}{N} \sum_{\alpha \equiv \gamma} \prod_{i \in \gamma} \sigma_{i}$
$\sigma_{i} \in 1,-1$
$\alpha \supset \gamma$
In this case, σ is a vector representing the state of the system. When a site is not occupied or if the cluster expansion method is modelling two different types of atoms, the possible value of σ_{i} of -1 means that these terms do not disappear in the summation and product expansions. We expect that this derivation can be expanded to the $\mathrm{n}^{\text {th }}$ order and write out the expansion of these equations up to the second order as follows:
$0^{\text {th }}$ order: $\bar{\Pi}_{\alpha_{0}}(\sigma)=\frac{1}{N} \sum_{\alpha_{0} \equiv \gamma_{0}} 1=1$
$1^{\text {st }}$ order: $N \bar{\Pi}_{\alpha_{1}}(\sigma)=\sum_{\alpha_{1} \equiv \gamma_{1}} \sigma_{\gamma 1}$
$2^{\text {nd }}$ order: $N \bar{\Pi}_{\alpha_{2}}(\sigma)=\sum_{\alpha_{2} \equiv \gamma_{2}} \sigma_{\gamma 2,1} \sigma_{\gamma 2,2}$
In this notation, ${ }^{\alpha} n$ represents a type of cluster of order n and γ_{n} represents a specific cluster atom. The ${ }_{i}$ and μ_{i} terms are directly related by the following equations:
$\sigma_{i}=2 \mu_{i}-1$
$\mu_{i}=\frac{1}{2}\left(\sigma_{i}+1\right)$
In the case of the linear model up to a di-atomic cluster, we can expand the expression for the site multiplicity up to the second order and re-express these equations as a function of σ then as a function of $\bar{\Pi}_{\alpha}(\sigma)$ using the above definitions as follows:
$X_{\alpha}(\mu)=\frac{1}{N} \sum_{\alpha \equiv \gamma} \prod_{i \in \gamma} \mu_{i}$
$0^{\text {th }} \operatorname{order}: X_{\alpha_{0}}(\mu(\sigma))=\frac{1}{N} \sum_{\alpha_{0} \equiv \gamma_{0}} 1=1=\bar{\Pi}_{\alpha_{0}}(\sigma)$
$1^{\text {st }}$ order $: 2 X_{\alpha_{1}}(\mu(\sigma))=\frac{2}{N} \sum_{\alpha_{1} \equiv \gamma_{1}} \mu_{\gamma}=\frac{1}{N} \sum_{\alpha_{1} \equiv \gamma_{1}}\left(\sigma_{\gamma_{1}}+1\right)=\frac{1}{N} \sum_{\alpha_{1} \equiv \gamma_{1}} \sigma_{\gamma_{1}}+1=\bar{\Pi}_{\alpha_{1}}(\sigma)+1$

$$
\begin{aligned}
& 2^{\text {nd }} \text { order: } 4 X_{\alpha_{2}}(\mu(\sigma)) \\
& \quad=\frac{4}{N} \sum_{\alpha_{2} \equiv \gamma_{2}} \mu_{\gamma_{2,1}} \mu_{\gamma_{2,2}}=\frac{1}{N} \sum_{\alpha_{2} \equiv \gamma_{2}}\left(\sigma_{\gamma_{2,1}} \sigma_{\gamma_{2,2}}+\sigma_{\gamma_{2,1}}+\sigma_{\gamma_{2,2}}+1\right)=\frac{1}{N} \sum_{\alpha_{2} \equiv \gamma_{2}} \sigma_{\gamma_{2,1}} \sigma_{\gamma_{2,2}}+\frac{1}{N} \\
& \quad \sum_{\alpha_{2} \equiv \gamma_{2}}\left(\sigma_{\gamma_{2,1}}+\sigma_{\gamma_{2,2}}\right)+\frac{1}{N} \sum_{\alpha_{2} \equiv \gamma_{2}} 1 \\
& =\bar{\Pi}_{\alpha_{2}}(\sigma)+\frac{n_{\alpha_{2}}}{N} m_{\alpha_{2}} \bar{\Pi}_{\alpha_{1}}(\sigma)+\frac{n_{\alpha_{2}}}{N} m_{\alpha_{2}} / 2
\end{aligned}
$$

$m_{\alpha_{2}}$ counts the multiplicity with respect to the specific cluster according to symmetry. ${ }^{n_{\alpha_{2}}}$ is the number of sites associated with the particular interaction. To understand the meaning of $m_{\alpha_{2}}$, take the following four types of second order cluster for example. They are $\mathrm{Na}-\mathrm{Na}$ first nearest interaction, $\mathrm{Na}-\mathrm{Na}$ second nearest interaction, $\mathrm{Na}-\mathrm{TM}$ first nearest interaction and TM-TM first nearest interaction. The solid balls represent sites which could be vacant or occupied, or species A or B in the case of ion mixing sites. For $\alpha_{N a-N a 1,}, m_{\alpha_{2}}=3$ and ${ }^{n_{\alpha_{2}}}$ is the number of Na sites. As second order interaction involves two atoms, the summation must be divided by 2. For $\alpha_{N a-N a 2}, m_{\alpha_{2}}=6$ and $n_{\alpha_{2}}$ is also the number of Na ions. For ${ }^{\alpha_{N a-N i 1},} m_{\alpha_{2}}=4$ and $n_{\alpha_{2}}$ is the number of Na sites and 2 fold of TM sites. For ${ }^{\alpha_{T M-T M 1},},_{\alpha_{2}}=6$ and ${ }^{n_{\alpha_{2}}}$ is the number of TM sites.

We can re-write these equations as the following matrix equation:
$\left[\begin{array}{c}X_{\alpha_{0}} \\ 2 X_{\alpha_{1}} \\ 4 X_{\alpha_{2}}\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ m_{\alpha_{2} n_{\alpha_{2}}}^{2 N} & \frac{m_{\alpha_{2}} n_{\alpha_{2}}}{N} & I\end{array}\right]\left[\begin{array}{l}\bar{\Pi}_{\alpha_{0}} \\ \bar{\Pi}_{\alpha_{1}} \\ \bar{\Pi}_{\alpha_{2}}\end{array}\right]$
I is the identity matrix, whose dimension is decided by the number of the type of ${ }^{\alpha_{2}}$ used. In more compact form:

$$
X^{T}=P \bar{\Pi}^{T} \text { or } X=\bar{\Pi} P^{T}
$$

$P=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 / 2 & 1 / 2 & 0 \\ m_{\alpha_{2}} / 8 & m_{\alpha_{2}} / 4 & I / 4\end{array}\right]$
From which we can see that $\bar{\Pi}_{\alpha}(\sigma)$ and $X_{\alpha}(\mu)$ are inter-transferrable via a linear relationship. By ignoring error term, we can obtain the relationship between $J^{C E}$ and $J^{L M}$ accordingly:
$E^{L M}=E^{C E}$
$X \cdot N J^{L M}=\bar{\Pi} \cdot J^{C E}$
$\bar{\Pi} P^{T} \cdot N J^{L M}=\bar{\Pi} \cdot J^{C E}$

By solving the least square fit problem of either $\quad \sum_{\alpha}$, the cluster expansion model or $E^{L M}(\mu)=\sum_{\alpha} X_{\alpha}(\mu) \beta_{\alpha}$,

$$
P^{T} \cdot N J^{L M}=J^{C E} \text { or } N J^{L M}=\left(P^{T}\right)^{-1} J^{C E}
$$

$$
E^{C E}(\sigma)=\sum_{\alpha} \bar{\Pi}_{\alpha}(\sigma) J_{\alpha}^{C E}
$$, the simple linear model, we can obtain the coefficients of β_{α} and $J_{\alpha}^{C E}$ simultaneously.

(end of proof)

[^0]: ${ }^{1}$ Cairns, R W; Ott, E. X-Ray Studies of the System Nickel-Oxygen-Water. I. Nickelous Oxide and Hydroxide. Journal of the American Chemical Society, 1933, 55, 527-533

[^1]: ${ }^{2}$ Liu, J., Yin, L., Wu, L., Bai, J., Bak, S.M., Yu, X., Zhu, Y., Yang, X.Q., and Khalifah, P.G. (2016). Quantification of Honeycomb Number-Type Stacking Faults: Application to Na3Ni2BiO6 Cathodes for Na-Ion Batteries. Inorg. Chem. 55, 8478-8492.

[^2]: ${ }^{3}$ Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-Type Nax [Fe1/2 Mn1/2[O2 Made from Earth-Abundant Elements for Rechargeable Na Batteries. Nat. Mater. 2012, 11, 512-517.

[^3]: ${ }^{4}$ Meenakshisundaram, A.; Srinivasan, V.; Gunasekaran, N. Distribution of metal ions in transition metal manganites A Mn2 O4 A= Co, Ni, Cu, or Zn. Physica Status Solidi, Sectio A: Applied Research, 1982, 69, 15-19

[^4]: ${ }^{5}$ Cococcioni, M., and De Gironcoli, S. (2005). Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B - Condens. Matter Mater. Phys. 71, 1-16.

[^5]: ${ }^{6}$ https://th.fhi-berlin.mpg.de/sitesub/meetings/dft-workshop-2016/uploads/Meeting/Tutorial 7 2016.pdf

