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1. DFT analysis

The present first principle DFT calculations are performed with the
projector augmented wave (PAW) method [1-2]. The exchange-functional
is treated using the generalized gradient approximation (GGA) of Perdew-
Burke-Ernzerhof (PBE) [3] functional. The cut-off energy of the plane-
wave basis is set at 400 eV for optimize calculations of atoms and cell
optimization. The vacuum spacing in a direction perpendicular to the plane
of the catalyst is at least 10 A. The Brillouin zone integration is performed
using 3x3x1 Monkhorst-Pack k-point sampling for a primitive cell [4]. The
self-consistent calculations apply a convergence energy threshold of 10-
eV. The equilibrium lattice constants are optimized with maximum stress
on each atom within 0.05 eV/A. The Hubbard U (DFT+U) corrections for
3d transition metal by setting according to the literature [5]. Finally, the
adsorption eneries (Eads) can be calculated by: Eads=Egfceia-
(EsurfacetEA), Where Egypucera 18 the energy of systems with CO, molecular
adsorbed, Esurface is the energy of surface stcructure, and the EA is the

energy of CO, molecular.
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Fig. S1. The specific photocatalytic CO, reduction system.
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Fig. S2. XRD patterns of prepared binary and ternary composite photocatalysts.



Fig. S3. SEM images of 1-CAr, 3-CAr, 5-CAr and 10-CAr.



Fig. S4. TEM image of pure Au NPs.
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Fig. S5. The yields of CO and CHy in the photocatalytic CO, reduction process over all binary and

ternary composite photocatalysts.
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Fig. S6. Gas chromatography-mass spectrometry (GC-MS) results of CO and CH,4 produced by 3-
CAr.
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Fig. S7. N, adsorption-desorption isotherms of pure CdIn,S,, 2-CA and 3-CAr.
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Fig. S8. CO, adsorption ability of pure CdIn,S,, 2-CA, 3-CAr and 3-Cr.
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Fig. S9. The VB of pure CdIn,Sy, 2-CA and 3-CAr.
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