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Fig S1. (a) Chemical structures of the compounds for synthesizing PU-PEI elastomer. (b) Schematic illustration of the 

fabrication of PU-PEI elastomer (i. PU colloid; ii. PU-PEI colloidal complex; iii. PU-PEI elastomer). 

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.
This journal is © The Royal Society of Chemistry 2020



2

Fig S2. FTIR spectra of PU, PEI and PU-PEI. 

The FTIR spectra of PU, PEI and PU-PEI are shown in Fig S2. The PU has typical peaks of N-H 

stretching at 3323 cm-1, C-H stretching at 2937 cm-1 and 2860 cm-1, C=O stretching at 1709 cm-1, 

N-H bending at 1535 cm-1, C-H bending at 1458 cm-1 and 1365 cm-1, C-O stretching at 1235 cm-1 

and 1102 cm-1, and no absorption peak of the N=C=O group (2270 cm−1), indicating the formation 

of urethane (H-N-COO-) group from N=C=O (IPDI) and O-H (PPG-2000). The PEI has typical 

peaks of N-H stretching at 3276 cm-1, C-H stretching at 2940 cm-1 and 2806 cm-1 N-H bending at 

1596 cm-1, C-H bending at 1458 cm-1 and 1342 cm-1, and C-N stretching at 1350–1000 cm-1.S1 The 

similar FTIR spectra for both PU and PU-PEI elastomers indicate that no chemical reaction 

occurred after incorporating PEI into PU.
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Fig S3. Average diameter and zeta potential of PU and PU-NH4OH colloid.
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Fig S4. Precipitation of PU-PEI colloid complex without ammonia hydroxide protection.

Fig S5. Phase behavior of PU-PEI colloidal complex with different initial concentrations (wt%) of PEI during the 

water evaporation.

As the water evaporated, the polymer concentration of PU-PEI colloidal complex increased, 

resulting in phase change from fluid to gelation and then film. Initially, the samples contain the 

PU colloidal particles and the PEI polymers, which exist as a stable fluid. As the concentration 

increases, samples start to aggregate without losing their flowability. The aggregation is whitish 

and can be readily noticed with naked eyes. Then, with the continuous evaporation of water, 

samples become a gel that cannot flow. In the gelation state, samples only have weak mechanical 

properties that has not formed a film yet. Finally, as the color turns from white to transparent, the 

gel becomes to a continuous film that can be peeled off.
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Fig S6. (a) AFM phase diagram of PU-PEI elastomer with (a) 0% PEI, (b) 2.3% PEI and (c) 6.6% PEI

Fig S7. Measured density of PU-PEI elastomers with different concentrations of PEI.  
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Fig S8. Transmittance of PU-PEI elastomers with different concentrations of PEI. 

Fig S9. X-Ray diffraction of PU-PEI elastomers with different concentrations of PEI.
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Fig S10. Stress-strain curve for PU-PEI elastomer (2.3% PEI) in wet and dry states. Inserted photo is PU-PEI 

elastomer (2.3% PEI) after soaking in water for 24 hours. 

Fig S11. Self-healing efficiency of PU-PEI elastomers with different concentrations of PEI for 24 hours.
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Fig S12. (a) Stress-strain curve of healed PU-PEI elastomer (2.3% PEI) at different healing conditions. (b) Self-healing 

efficiency of PU-PEI elastomers (2.3%PEI) at different healing conditions. 
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Fig S13. Ashby plot of “toughness”, “tensile strength” and “self-healing time” of the PU-PEI elastomer and other 

room temperature self-healing elastomers reported in literatures. 18,20,22,24-27,32-53  
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Fig S14. (a) Topology and (b) thickness of PU-PEI antenna.

Fig S15. a) Simulated 3d radiation pattern of original (left) and healed (right) PU-PEI antenna. (b-d) Simulated and 

measured 2d radiation pattern of PU-PEI antenna at phi 0, theta 90 and phi 90, respectively. 
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Fig S16. Measured impedance of original and healed PU-PEI antenna. 

Fig S17. Effciency of original and healed PU-PEI antenna.
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Fig S18. Realized gain of original and healed PU-PEI antenna.

Table S1. Comparison of electrical conductivity, stretchability and stretching cycles of the PU-PEI-Ag composite 
with other printable silver-based soft electronic materials.

Conductive components Conductivity at 0% 
strain (S/cm)

Conductivity at 70% 
strain(S/cm)

Tested stretching 
cycles

Ref

Silver flake-carbon nanotube 
hybrid

5710 800 5000 S2

Silver flake 3570 1200 N/A S3
Silver flake 738 400 S4

Silver nanoparticle 5450 3700 100 S5
Silver nanoparticle-carbon 

nanotube hybrid
6000 260 300 S6

Silver nanowire 16500 8002 1000 S7
Silver nanowire 2043 140 160 S8 

Silver flake 4087 58 400 This 
work
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