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General Information.

'H and '3C NMR spectra were recorded on a Bruker AV-400 MHz NMR spectrometer.
Chemical shifts are reported in parts per million (ppm, ). '"H NMR and 3C NMR
spectra were referenced to tetramethylsilane (0 ppm) for CDCIl;. Mass spectra were
collected on a MALDI Micro MX mass spectrometer, or an API QSTAR XL System.

Materials. 4,7-dibromo-5,6-dinitrobenzo[c][1,2,5]selenadiazole 1 and trimethyl(3-
undecylselenopheno|[3,2-b]thiophen-5-yl)stannane were synthesized according to
previous reported literature.l'} 21 PM6 (Mn=24.2 kDa) was purchased from Solarmer
Energy Inc. Tetrahydrofuran were freshly distilled before use from sodium using
benzophenone as the indicator. All other reagents and chemicals were purchased from
commercial sources and used without further purification.

Optical characterizations. Film UV-Vis absorption spectra were acquired on a Perkin
Elmer Lambda 20 UV/VIS Spectrophotometer. All film samples were spin-cast on ITO
substrates. UV-Vis absorption spectra were collected from the solution of three small
molecules with the concentration of 1.0 x 10> M in chloroform. A cuvette with a
stopper (Sigma Z600628) was used to avoid volatilization during the measurement.

Electrochemical characterizations. Cyclic voltammetry was carried out on a
CHI6I0E electrochemical workstation with three electrodes configuration, using
Ag/AgCl as the reference electrode, a Pt plate as the counter electrode, and a glassy
carbon as the working electrode. 0.1 mol L! tetrabutylammonium hexafluorophosphate
in anhydrous acetonitrile was used as the supporting electrolyte. The polymer and small
molecules were drop-cast onto the glassy carbon electrode from chloroform solutions
(5 mg/mL) to form thin films. Potentials were referenced to the ferrocenium/ferrocene
couple by using ferrocene as external standards in acetonitrile solutions. The scan rate
is 100 mV s,

AFM analysis. AFM measurements were performed by using a Scanning Probe
MicroscopeDimension 3100 in tapping mode. All film samples were spin-cast on [TO
substrates.

Solar cell fabrication and testing. OSCs were made with a device structure of ITO
(indium tin oxide)/PEDOT: PSS(poly(3,4-ethylenedioxythiophene): poly (styrene
sulfonate))/PM6: acceptor/ PNDIT-F3N ([(9,9-bis(3'-(N,N-dimethylamino)propyl)-
2,7-fluorene)-alt-5,5'-bis(2,2'-thiophene)-2,6-naphthalene-1,4,5,8-tetracaboxylic-N,N'-
di(2-ethylhexyl)imide]) /Ag. The patterned ITO-coated glass was scrubbed by
detergent and then cleaned inside an ultrasonic bath by using deionized water, acetone,
and isopropyl alcohol sequentially and dried overnight in an even. Before use, the glass
substrates were treated in a UV-Ozone Cleaner for 20 min to improve its work function
and clearance. A thin PEDOT: PSS (Heraeus Clevios P VPA 4083) layer with a
thickness of about 40 nm was spin-coat onto the ITO substrates at 4000rmp for 40 s,
and then dried at 150 °C for 15 min in air. The PEDOT: PSS coated ITP substrates were



transferred to a N,-filled glove box for further processing. The donor: acceptor blends
with weight ratio of 1:1.2 and total concentration of 16mg/mL dissolved in chloroform.
Then the solution was stirred overnight for intensive mixing in a nitrogen-filled glove
box. The blend solution was spin-cast on the top of PEDOT: PSS layer immediately
after being stirred on a hotplate of 65 °C for 30 minutes at 2500 rpm for 40 s. Then it
was annealed at 90 °C for 5 min to remove the solvent. A thin layer of PNDIT-F3N
(~10 nm) was cast onto processed active layer, and Ag layer (~100 nm) was deposited
in thermal evaporator under vacuum of 5x10-3 Pa through a shadow mask. The optimal
blend thickness measured on a Bruker Dektak XT stylus profilometer was about 100nm.
The current-voltage(J-V) characteristic curves of all packaged devices were measured
by using a Keithley 2400 Source Meter in air. Photocurrent was measured under AM
1.5G (100 mW cm?) using a Newport solar simulator in an Air. The light intensity was
calibrated using a standard Si diode (with KGS5 filter, purchased from PV Measurement)
to bring spectral mismatch to unity. EQEs were measured using an Enlitech QE-S EQE
system equipped with a standard Si diode. Monochromatic light was generated from a
Newport 300W lamp source.

EQE measurements. EQEs were measured using an Enlitech QE-S EQE system
equipped with a standard Si diode. Monochromatic light was generated from a Newport
300W lamp source.

Hole-mobility measurements. The hole-mobilities were measured using the space
charge limited current (SCLC) method, employing a device architecture of
ITO/PEDOT:PSS/blend film/MoO3/Al. The mobilities were obtained by taking
current-voltage curves and fitting the results to a space charge limited form, where the
SCLC is described by:

9o, u(V Vyi— VS)2

appl ~
8L}

Where ¢ is the permittivity of free space, ¢, is the relative permittivity of the material
(assumed to be 3), u is the hole mobility and L is the thickness of the film. From the
plots of J2 vs Vappt =Vbi =V hole mobilities can be deduced.

Electron mobility measurements. The electron mobilities were measured using the
SCLC method, employing a device architecture of ITO/ZnO/blend film/Ca/Al. The
mobilities were obtained by taking current-voltage curves and fitting the results to a
space charge limited form, where the SCLC is described by:

9o, u(V Vyi— VS)2

appl ~
8L}

Where ¢ is the permittivity of free space, ¢; is the relative permittivity of the material
(assumed to be 3), u is the hole mobility and L is the thickness of the film. From the
plots of J2 vs Vappt =Vbi = Vs electron mobilities can be deduced.



GIWAXS characterization. GIWAXS measurements were performed at beamline
7.3.3 at the Advanced Light Source.[?! Samples were prepared on Si substrates using
identical blend solutions as those used in devices. The 10 keV X-ray beam was incident
at a grazing angle of 0.13°, which maximized the scattering intensity from the samples.
The scattered X-rays were detected using a Dectris Pilatus 2M photon counting
detector. In-plane and out-of-plane sector averages were calculated using the Nika
software package.[*! The uncertainty for the peak fitting of the GIWAXS data is 0.3 A.

The coherence length was calculated using the Scherrer equation:
L = 2nK

c Aq

R-SoXS characterization. R-SoXS transmission measurements were performed at
beamline 11.0.1.2 at the Advanced Light Source.’! Samples for R-SoXS measurement
were prepared on a PSS modified Si substrate under the same conditions as those used
for device fabrication, and then transferred by floating in water to a 1.5 mm x 1.5 mm,
100 nm thick Si;Ns membrane supported by a 5 mm x 5 mm, 200 um thick Si frame
(Norcada Inc.). 2D scattering patterns were collected on an in-vacuum CCD camera
(Princeton Instrument PI-MTE). The sample detector distance was calibrated from
diffraction peaks of a triblock copolymer poly(isoprene-b-styrene-b-2-vinyl pyridine),
which has a known spacing of 391 A. The beam size at the sample is approximately
100 um by 200 pm.

Photoluminescence (PL) and electroluminescence (EL) measurements: PL data
werecollected using a Zolix Flex One Spectrometer. The PL excitation wavelength was
set to 639 nm.

Fourier-transform photocurrent spectroscopy external quantum efficiency
(FTPS-EQE) measurements: FTPS-EQE spectra were measured by using a Vertex 70
from Bruker optics and QTH lamp. The EL signature was collected with

monochromator and detected with Si-CCD detector.
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Figure S1. Thermogravimetric curves of Y6, Y6-Se and Y6-2Se. The thermal

degradation temperature (T4 at 5% weight loss) of two SMAs are 213, 227 and 337 °C.
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Figure S2. Blend film absorption of PM6:Y6, PM6:Y 6-Se and PM6:Y 6-2Se.
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Figure S3. The dark J-V curves of the PM6:Y6, PM6:Y 6-Se and PM6:Y 6-2Se devices.

Table S1. The resistance parameters of the PM6:Y6, PM6:Y6-Se and PM6:Y6-2Se
devices.

PM6:Y6 PM6:Y6-Se PM6:Y6-2Se
Rs (Q-cm?) 5.2 3.9 6.1
Rsn (kQ-cm?) 2.0 2.6 1.9
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Figure S4. Photoluminescence quenching experiment of (a) the pristine Y6 film and
PM6: Y6 blend films excited at 785 nm; the pristine Y6-Se film and PM6: Y6-Se blend
films excited at 785 nm; the pristine Y6-2Se film and PM6: Y6-2Se blend films excited
at 785 nm (b) the pristine PM6 film, the PM6: Y6, PM6: Y6-Se and PM6: Y6-2Se blend

films excited at 514 nm.
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Table S2. Photovoltaic performance parameters of PM6:Y 6-Se at different D/A ratios.

D:A Ratio Voc s FF PCE
(w/w) ) (mA/cmZ) (%) (%)
1:1 0.82 24.74 0.74 15.15
1:1.2 0.82 25.99 0.75 16.02
1:1.4 0.82 25.19 0.72 14.92

Table S3. Photovoltaic performance parameters of PM6:Y 6-2Se at different D/A ratios.
J

D:A Ratio Voc 3¢ FF PCE
(ww) Y o
) (mA/cm’) () (%)

1:1 0.84 23.56 0.72 14.35

1:1.2 0.83 24.65 0.72 14.94

1:14 0.84 24.39 0.72 14.66




Table S4. Photovoltaic performance parameters of PM6:Y6-Se at 1:1.2 D/A ratios
with different contents of additive.

J.

Additive CN Voc > FF PCE

(%) % %
V) (mA/cm’) (%) (%)
0CN 0.82 25.50 0.65 13.70
0.2 CN 0.82 2521 0.70 14.64
0.5CN 0.82 25.99 0.75 16.02
0.7 CN 0.81 18.34 0.67 9.94

Table S5. Photovoltaic performance parameters of PM6:Y6-2Se at 1:1.2 D/A ratios
with different contents of additive.

J
Additive CN Voc > FF PCE
(%) % %
V) (mA/em’) (%) (%)
0CN 0.84 23.88 0.69 13.85
0.2CN 0.84 24.40 0.71 14.51
0.5CN 0.84 24.65 0.72 14.94

0.7 CN 0.84 23.67 0.67 13.44
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Figure S6. (a-c) Normalized electroluminescence (EL) and Absorption (Abs) spectra
of Y6, Y6-Se and Y6-2Se for accurate bandgap calculation.

Table S6. Detailed Vs parameters of the devices based on Y6, Y6-Se and Y6-2Se.

Device E gap VOC Vioss ngca AEl Vr(z(i ’ AEZ ¢ AEgd
[eV] [eV] [eV] [eV] [eV] [eV] [eV] [eV]
PM6:Y6 1.405 0.83 0.575 1.133 0.254 1.068 0.065 0.238

PM6:Y6-Se 1.375 082 0555 1.119 0.256 1.036 0.083 0.216
PM6:Y6-2Se 1.393 0.83  0.563 1.139 0254 1.065 0.074 0.235

SQ
aVoc : Schokley-Queisser limit to Voc.

rad
bV oc : radiative limit to Vo, measured using EQEg;.

rad
cAE, (AV oc ): voltage losses due to non-ideal absorption (it was calculated from EL

and FTPS measurements).

AN - rad o ] )
dAFR, ( oc  ):voltage losses due to non-radiative recombination only.



Synthesis of Y6-Se and Y6-2Se

N N
X C11Hz3 X
2N Y. 2N
N N Messnm CyqHap3 N\ N C11Ha3 CyqHa3 Y Y, Ci1Hz3
5 Y, Y- Q 1). PPh; 0-DCB I \ | \ // T
Br o —— » | ) N | —_— N N
PA(PPhy)Cly, s s 2). KI, K,CO; DMF s s
C,H,
O,N NO, Tol, 80 °C O,N NO, 2 SY\Br CzHs CoHs
C4Hq CsHy  C4Hy
= 2 (X=Se, Y=S) 4 (X=Se, Y=S|
1 (X=Se (X=Se, Y=S)
(X=Se) 3 (X=S, Y=Se) 5 (X=S, Y=Se)

1). LDA, THF
-78°C

R
2). DMF
6 (X=Se, Y=S) F F Y6 (X=S, Y=S) F F
7 (X=S, Y=Se) Y6-Se (X=Se, Y=S)
Y6-2Se (X=S, Y=Se)
Synthesis of 5,6-dinitro-4,7-bis(6-undecylthieno[3,2-b]|thiophen-2-
yDbenzo[c][1,2,5]selenadiazole (2)
_Se, s Ci1Ha _Se,
NN Me;Snm CytHas . NN . CiiHzs
Br e .7 [ B
Pd(PPh3),Cl;, S / \ s
oN  No, Tol, 80°C ON  NO,
1 2

To a mixture of 4,7-dibromo-5,6-dinitrobenzo|[c][1,2,5]selenadiazole (1, 500 mg, 1.16
mmol), trimethyl(3-undecylthiopheno[3,2-b]thiophen-5-yl)stannane (1.46 g, 2.88
mmol), Pd,(dba); (60 mg, 0.065 mmol) and P(o-tol); (160 mg, 0.523 mmol) was added
anhydrous toluene (10 mL) under N,. The reaction mixture was stirred for 12 h at 120
°C. Then, the reaction mixture was cooled and poured into an aqueous potassium
fluoride. The mixture was extracted with diethyl ether for three times. The combined
organic phase was washed with water followed by brine. Then, the solution was dried
over Na,SO, and concentrated under reduced pressure. The residue was purified by
column  chromatography  (stationary  phase: silica gel; eluent: n-
hexane:dichloromethane = 1:1) to get the product as dark red solid (713 mg, 72%).

'H NMR (400 MHz, CDCl;) 6 7.64 (s, 2H), 7.16 (s, 2H), 2.77 (t, J= 7.7 Hz, 4H), 1.82-

1.75 (m, 4H), 1.41-1.27 (m, 32H), 0.88 (t, J = 6.8 Hz, 6H).
MALDI-TOF MS: cacld for C4Hs0N4O4S4Se (M+), 858.1880; found, 858.1894.

Synthesis of 5,6-dinitro-4,7-bis(3-undecylselenopheno[3,2-b]thiophen-5-
yl)benzo|c|[1,2,5]thiadiazole (3)

g se_ friban N

s
N N Megsn

CyH N C41H;
\ Y e e
s Se Se N
Br Br —— 4 ‘ Y/, \ ‘
Pd(PPh;),Cly, s s
o,N  NO, Tol, 80 °C o,N NO,

To a mixture of 4,7-dibromo-5,6-dinitrobenzo[c][1,2,5]thiadiazole (500 mg, 1.31
mmol), trimethyl(3-undecylselenopheno[3,2-b]thiophen-5-yl)stannane (1.46 g, 2.88
mmol), Pd,(dba); (60 mg, 0.065 mmol) and P(o-tol); (160 mg, 0.523 mmol) was added



anhydrous toluene (10 mL) under N,. The reaction mixture was stirred for 12 h at 120
°C. Then, the reaction mixture was cooled and poured into an aqueous potassium
fluoride. The mixture was extracted with diethyl ether for three times. The combined
organic phase was washed with water followed by brine. Then, the solution was dried
over Na,SO, and concentrated under reduced pressure. The residue was purified by
column  chromatography  (stationary  phase: silica gel; eluent: n-
hexane:dichloromethane = 1:1) to get the product as dark red solid (973 mg, 82%).

'H NMR (400 MHz, CDCl;) 6 7.88 (s, 2H), 7.18 (s, 2H), 2.79 (t, J= 7.7 Hz, 4H), 1.85-
1.75 (m, 4H), 1.47-1.25 (m, 32H), 0.91 (t, J = 6.8 Hz, 6H).

BCNMR (100 MHz, CDCl3) 6 152.01, 145.78, 140.16, 138.02, 132.49, 126.28, 124.76,
122.43, 31.93, 30.70, 29.68, 29.65, 29.60, 29.40, 29.37, 28.73, 22.71, 14.14.
MALDI-TOF MS: cacld for C4HsoN404S3Se, (M+), 906.1325; found, 906.1384.

Synthesis of 12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-
[1,2,5]selenadiazolo[3,4-e]|thieno[2'",3'':4',5"|thieno[2',3"':4,5]pyrrolo[3,2-
g|thieno|[2',3':4,5]thieno[3,2-b]indole (4)

1) PPh;, 0-DCB
2) Kl, K,CO; DMF

czu

2 4

Compound 2 (500 mg, 0.58 mmol) and triphenylphosphine (1.53 g, 5.83 mmol) were
dissolved in anhydrous 1,2-dichlorobenzene (o-DCB, 3 mL) under argon and the
mixture was stirred at 180 °C overnight. After cooling to room temperature, methanol
was added and the mixture was filtered under reduced pressure to yield an orange solid.
Subsequently, the orange intermediate was then mixed with K,CO;5 (483 mg, 3.49
mmol), KI (34 mg, 0.58 mmol), 2-ethylhexyl (894 mg, 4.65 mmol) and anhydrous DMF
(10 mL) were mixed under argon and stirred at 80 °C overnight. The mixture was
extracted with diethyl ether for three times. The combined organic phase was washed
with water followed by brine. Then, the solution was dried over Na,SO, and
concentrated under reduced pressure. The residue was purified by column
chromatography (stationary phase: silica gel; eluent: n-hexane:dichloromethane = 1:1)
to give an orange solid (354 mg, 60% yield, two steps).

'H NMR (400 MHz, CDCl3) & 7.00 (s, 2H), 4.63-4.53 (m, 4H), 2.82 (t, J = 7.6 Hz, 4H),
2.09-2.06 (m, 2H), 1.90-1.82 (m, 4H), 1.46-1.28 (m, 36H), 1.13-0.87 (m, 18H), 0.69-
0.62 (m, 12H).

13C NMR (100 MHz, CDCl3) § 153.77, 142.00, 136.86, 136.64, 131.49, 123.61, 123.48,
119.07, 113.34, 54.86, 39.93, 31.96, 30.33, 29.71, 29.67, 29.65, 29.54, 29.50, 29.39,
28.86,27.75, 23.13, 23,08, 22.79, 22.73, 14.15, 13.75, 10.09, 10.05.

MALDI-TOF MS: cacld for CssHgN,4SSe (M+), 1018.4588; found, 1018.4545.

Synthesis of 12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-



[1,2,5]thiadiazolo[3,4-e|thieno[2',3'":4',5'|selenopheno[2',3':4,5]pyrrolo[3,2-
g|thieno|[2',3":4,5]selenopheno|3,2-b]indole (5)

N
CyH N° N Ci1Hzs
"\® \ Se Se

Se Se 1). PPh3, 0-DCB CiqHzs
T \ |/ i
N N

I, UH: /
s 2). KI, K,CO; DMF
C,Hs s S
Br CoHs C2Hs

CaH
e CHy  CgHg

3 5

Compound 3 (500 mg, 0.55 mmol) and triphenylphosphine (1.45 g, 5.52 mmol) were
dissolved in anhydrous 1,2-dichlorobenzene (o-DCB, 3 mL) under argon and the
mixture was stirred at 180 °C overnight. After cooling to room temperature, methanol
was added and the mixture was filtered under reduced pressure to yield an orange solid.
Subsequently, the orange intermediate was then mixed with K,CO;5 (458 mg, 3.31
mmol), KI (32 mg, 0.55 mmol), 2-ethylhexyl (848 mg, 4.41 mmol) and anhydrous DMF
(10 mL) were mixed under argon and stirred at 80 °C overnight. The mixture was
extracted with diethyl ether for three times. The combined organic phase was washed
with water followed by brine. Then, the solution was dried over Na,SO, and
concentrated under reduced pressure. The residue was purified by column
chromatography (stationary phase: silica gel; eluent: n-hexane:dichloromethane = 1:1)
to give an orange solid (377 mg, 64% yield, two steps).

'H NMR (400 MHz, CDCls) 6 7.02 (s, 2H), 4.75-4.58 (m, 4H), 2.84 (t, J = 7.6 Hz, 4H),
2.14-1.99 (m, 2H), 1.95-1.78 (m, 4H), 1.51-1.25 (m, 36H), 1.16-0.86 (m, 18H), 0.67-
0.62 (m, 12H).

BCNMR (100 MHz, CDCl3) 6 148.11, 140.28, 139.19, 137.88, 131.01, 125.27, 119.60,
118.46, 114.14, 54.85, 39.95, 31.95, 30.33, 29.71, 29.67, 29.62, 29.50, 29.39, 28.96,
27.63,23.06, 22.78, 22.73, 14.15, 13.74, 10.04.

MALDI-TOF MS: cacld for Cs¢Hg,N4S3Se, (M+), 1067.4105; found, 1067.4094.

Synthesis of 12,13-bis(2-ethylhexyl)-3-undecyl-9-(undecyloxy)-12,13-dihydro-
[1,2,5]selenadiazolo[3,4-e]|thieno[2',3'':4',5"|thieno[2',3"':4,5]pyrrolo[3,2-
g|thieno|2',3":4,5]thieno[3,2-b]indole-2,10-dicarbaldehyde (6)

s Se
NN N( /N
\ /)
1). LDA, THF
s s . s s
CyqHzs 4 / \ > CiqHps 78°C CiqHzs 4 ’ l D C11Hz3
- .
| N | ! oo !
s s 2). DMF oHe” S s” “cHo
CH \8 S/czm CoHs CoHs
CiHy  CqHo
6

C4Hy  C4Hg
4

To a solution of compound 4 (200 mg, 0.196 mmol) in THF (10 mL), 2.0 M lithium
diisopropylamide in hexane (0.20 mL, 0.400 mmol) was added dropwise slowly at =78
°C under N,. The mixture was stirred at —78 °C for 1 h, and then anhydrous DMF (1.0
mL) was added. The mixture was stirred overnight at room temperature. Brine was
added and the mixture was extracted with ethyl acetate for three times. The combined
organic phase was washed with water followed by brine. Then the solution was dried
over Na,SO, and concentrated under reduced pressure. The residue was purified by
flash column chromatography (eluent: n-hexane: CH,Cl,= 1:4, v/v) to get the product



as orange solid (160 mg, 75%).

'H NMR (400 MHz, CDCl3) & 10.13 (s, 2H), 4.64-4.54 (m, 4H), 3.18 (t, J = 7.6 Hz,
4H), 2.05-2.00 (m, J=10.7, 4.7 Hz, 2H), 1.95-1.87 (m, 4H), 1.48-1.25 (m, 36H), 1.11-
0.84 (m, 18H), 0.70-0.60 (m, 12H).

BCNMR (100 MHz, CDCls) 6 181.76, 153.32, 146.90, 143.13, 136.85, 136.43, 132.79,
129.63, 128.08, 114.28, 55.10, 40.13, 31.91, 31.60, 30.33, 29.65, 29.60, 29.52, 29.38,
29.33,28.17, 27.59, 23.08, 22.72, 22.69, 14.13, 13.69, 10.11, 10.08.

MALDI-TOF MS: cacld for CsgHg,N40,S4Se (M+), 1074.4486; found, 1074.4462.

Synthesis of 12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-
[1,2,5]thiadiazolo[3,4-e|thieno[2',3'":4',5'|selenopheno[2',3':4,5]pyrrolo[3,2-
g|thieno|[2',3":4,5]selenopheno|3,2-b]indole-2,10-dicarbaldehyde (7)

s
NN NN
\ \ N/
1). LDA, THF
CuiHas Se, Se CaiHas 78°C CiiHas se, \ Se CiiHas
[ \ \ I _ [ \ N . / I
s N N s 2). DMF s s
czus\e S/czus 2 2Hs

CiHy  CqHo CiHy  CqHo
5 7

To a solution of compound 5 (200 mg, 0.188 mmol) in THF (10 mL), 2.0 M lithium
diisopropylamide in hexane (0.20 mL, 0.400 mmol) was added dropwise slowly at =78
°C under N,. The mixture was stirred at —78 °C for 1 h, and then anhydrous DMF (1.0
mL) was added. The mixture was stirred overnight at room temperature. Brine was
added and the mixture was extracted with ethyl acetate for three times. The combined
organic phase was washed with water followed by brine. Then the solution was dried
over Na,SO, and concentrated under reduced pressure. The residue was purified by
flash column chromatography (eluent: n-hexane: CH,Cl,= 1:4, v/v) to get the product
as orange solid (179 mg, 85%).

'H NMR (400 MHz, CDCl3) 8 10.15 (s, 2H), 4.82-4.62 (m, 4H), 3.18 (t, /= 7.6 Hz,
4H), 2.04 (m, J=10.7, 4.7 Hz, 2H), 1.97-1.85 (m, 4H), 1.54-1.21 (m, 36H), 1.14-0.83
(m, 18H), 0.75-0.58 (m, 12H).

BCNMR (100 MHz, CDCl3) 6 181.56, 148.96, 147.90, 141.42, 137.68, 136.04, 132.18,
131.83, 124.51, 115.17, 55.08, 40.14, 31.91, 30.48, 29.63, 29.61, 29.51, 29.47, 29.39,
29.33, 28.86, 27.46, 23.04, 22.72, 22.69, 14.13, 13.69, 10.14, 10.08.

MALDI-TOF MS: cacld for CssHg,N4O,S3Se, (M+), 1122.3930; found, 1122.3947.

Synthesis of Y6-Se

6 Y6-Se

A mixture of compound 6 (100 mg, 0.093 mmol) and 2-(5,6-fluoro-3-o0xo0-2,3-dihydro-



1 H-inden-1-ylidene)malononitrile (108 mg, 0.465 mmol) in chloroform (10 mL) was
degassed before pyridine (1 mL) was added. The reaction was kept at 65 °C under N,
for 1h. The solvent was removed under reduced pressure and the residue was purified
by column chromatography (stationary phase: silica gel; eluent: dichloromethane) to
get the product as dark blue solid (100 mg, 72%).

'H NMR (400 MHz, CDCl3) 6 9.11 (s, 2H), 8.53 (dd, J=9.9, 6.5 Hz, 2H), 7.70 (T, J =
7.5 Hz, 2H), 4.82-4.65 (m, 4H), 3.20 (t, J = 7.8 Hz, 4H), 2.20-2.06 (m, 2H), 1.92-1.77
(m, 4H), 1.52-1.19 (m, 36H), 1.13-0.83 (m, 18H), 0.81-0.66 (m, 12H).

BCNMR (100 MHz, CDCl3) 6 185.81, 157.43, 155.34, 153.60, 152.89, 152.43, 145.19,
136.68, 136.38, 134.47, 133.82, 132.62, 131.61, 119.31, 11549, 114.57, 114.42,
112.07, 68.60, 50.20, 37.47, 35.65, 32.85, 31.94, 30.83, 29.85, 29.66, 29.65, 29.54,
29.42,29.36, 29.00, 25.93, 23.10, 22.71, 14.13, 10.89.

MALDI-TOF MS: cacld for Cg;HgsF4NgO,S4Se (M+), 1498.4858; found, 1498.4873.

Synthesis of Y6-2Se

A mixture of compound 7 (100 mg, 0.079 mmol) and 2-(5,6-fluoro-3-o0xo0-2,3-dihydro-
1 H-inden-1-ylidene)malononitrile (92 mg, 0.395 mmol) in chloroform (10 mL) was
degassed before pyridine (1 mL) was added. The reaction was kept at 65 °C under N,
for 1h. The solvent was removed under reduced pressure and the residue was purified
by column chromatography (stationary phase: silica gel; eluent: dichloromethane) to
get the product as dark blue solid (92 mg, 75%). 'H NMR (400 MHz, CDCl;) 6 9.09 (s,
2H), 8.53 (dd, J=10.0, 6.4 Hz, 2H), 7.69 (T, J= 7.5 Hz, 2H), 4.87-4.80 (m, 4H), 3.16
(t, J=7.8 Hz, 4H), 2.13-2.06 (m, 2H), 1.89-1.81 (m, 4H), 1.51-1.18 (m, 36H), 1.12-
1.02 (m, 12H), 0.88-0.73 (m, 12H), 0.71-0.66 (m, 6H). '3*C NMR (100 MHz, CDCl;)
0 186.12, 158.75, 156.17, 155.68, 155.55, 153.11, 153.05, 152.98, 152.91, 147.92,
143.37, 138.73, 138.53, 136.67, 136.59, 134.89, 134.43, 133.54, 132.44, 128.31,
119.78, 116.48, 115.01, 114.78, 114.59, 112.51, 112.32, 68.48, 55.64, 40.53, 31.91,
31.28, 30.72, 29.82, 29.69, 29.64, 29.62, 29.50, 29.44, 29.34, 27.69, 23.27, 23.23,
22.90, 22.69, 14.12, 13.80, 10.26, 10.18

MALDI-TOF MS: cacld for Cg;HgsF4NgO,S;Se, (M+), 1546.4302; found, 1546.4382.
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