Supporting Information

A nitrogen fixation strategy to synthesize NO via the thermallyassisted photocatalytic conversion of air

Yu Yu^{a,†}, Changhong Wang^{a,†}, Yifu Yu^{a,*}, Yanmei Huang^a, Cuibo Liu^a, Siyu Lu^c, Bin Zhanga,b,*

^aDepartment of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin 300072, China

^bTianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China

^cGreen Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou

450000, China

†These authors contributed equally to this work.

***Corresponding authors**

E-mail: yyu@tju.edu.cn; bzhang@tju.edu.cn

Additional Results and Discussion

Scheme S1. Schematic illustration for the thermal-assisted photocatalytic N_2 oxidation reactor.

Fig. S1 SEM image of WO₃ nanorods

SEM image showed that WO₃ nanorods were produced on a large scale.

Fig. S2 SEM image of the TiO₂/WO₃ heterostructured nanorods. The surface of WO_3 nanorods becomes rough after growing TiO_2 .

Fig. S3 Element mapping images of the TiO₂/WO₃ heterostructured nanorods.

STEM-EDS elemental mapping images revealed the elemental distribution. W and Ti elements distributed in core and shell, respectively, while oxygen existed in both core and shell. A thin layer of nanosheets coated on the WO_3 to produce the TiO_2/WO_3 heterostructured nanorods.

Fig. S4 FTIR spectrum of the $TiO₂/WO₃$ heterostructured nanorods.

The peaks located at 3413 and 1622 cm⁻¹ were due to the stretching and bending vibrations of the surface adsorbed water molecules. And the peaks located at 585 and 650 cm−1 were attributed to the stretching vibrations of Ti-O bond in TiO2. Moreover, the W-O stretching and vibration bands in the region 960 cm-1 to 800 cm-1 were also detected.

Fig. S5 N_2 adsorption-desorption isotherm for TiO_2/WO_3 heterostructured nanorods.

The BET surface area of $TiO₂/WO₃$ heterostructured nanorods was calculated to be 72.0 $m^2 g^{-1}$.

nanosheets.

SEM image (inset in Fig. S6a) showed the assembled nanosheet structure of $TiO₂$ nanosheets. HRTEM image (Fig. S6a) displayed the crystal structure of nanosheets with $TiO₂$ (101) plane. X-ray diffraction (XRD) pattern (Fig. S6b) further proved the nanosheets as pure $TiO₂$ (JCPDS No. 21-1272).

Fig. S7 UV-Vis absorbance spectra and the Tauc plots (inset) of the TiO_2/WO_3 heterostructured nanorods.

The intercepts of extrapolated straight lines of Tauc plots showed the corresponding bandgaps (2.76 eV) of the $TiO₂/WO₃$ heterostructured nanorods.

Fig. S8 UPS spectra of (a) WO_3 nanorods and (b) TiO_2 nanosheets.

Ultraviolet photoelectron spectroscopy (UPS) was used to determine the ionization potential [equivalent to the valence band energy (E_v)] of WO₃ nanorods and TiO₂ nanosheets, which was calculated to be 7.48 eV and 7.73 eV by subtracting the width of the He I UPS spectra from the excitation energy (21.22 eV). The detailed calculations were shown as follows:

The E_v versus vacuum level (eV) = 21.22 eV – (E_{cutoff} - E_{onset})

The E_v versus NHE (V) = (The E_v versus vacuum level -4.85) (V) (pH = 7)

Fig. S9 The schematic diagram for the band structures of WO_3 nanorods and TiO_2 nanosheets.

Fig. S10 Schematic illustration for the charge-carriers migration according to the type-II heterojunction mechanism in the $TiO₂/WO₃$ heterostructured nanorods.

Considering that the CB potential of WO_3 was more positive than the standard potential of O_2 / $\cdot O_2$ (-0.33 V vs NHE), no obvious $\cdot O_2$ signal should be observed if the photogenerated charge-carriers migration followed the type-II heterojunction mechanism.

Fig. S11 NO yield rate under different illumination intensity at 300 °C.

The yield rate of NO increased obviously with the increase of the illumination intensity from 1 sun to 5 sun.

Fig. S12 Effect of water vapour on the yield rate of NO.

The yield rate of NO using the wet simulated air as the feed gas under 1 sun illumination at 300 °C was 0.12 mmol g^{-1} h⁻¹, which was slight lower than that using the dry simulated air as the feed gas $(0.16 \text{ mmol g}^{-1} \text{ h}^{-1})$.

Fig S13. The time-dependent yield rate of NO over TiO₂/WO₃ heterostructures for continuous 8 hours test.

No obvious decline can be seen for the yield rate of NO, suggesting the well stability of the $TiO₂/WO₃$ heterostructures for photocatalytic oxidation of nitrogen.

Fig. S14 (a) SEM image and (b) XRD pattern of the $TiO₂/WO₃$ heterostructured nanorods after 8 hours test.

The morphology and crystalline structure of the $TiO₂/WO₃$ heterostructured nanorods maintained well after long-term test.

Fig. S15 Mass spectra of GC-MS analysis of the in the ${}^{15}N_2$ gas for the isotope experiment.

No ¹⁵NO (m/z = 31) was detected in the ¹⁵N₂ gas.

Fig. S16 Blank experiment: yield rate of NO production using different gas as the reactant.

No NO was detected in the argon atmosphere.

Fig. S17 Photograph of the device for photocatalytic N_2 oxidation under 10 sunlight illumination equipped with infrared thermometer for the detection of temperature on the surface of catalysts.

The temperature at the photocatalyst surface could achieve 200 °C as the incident light intensity was 10 sun.

Fig. S18 Temperature programmed desorption (TPD) profile of NO over $TiO₂/WO₃$ heterostructures.

In the NO TPD profile, there were two peaks at about 95 °C and 296 °C, which were attributed to the physical adsorption and chemical adsorption of NO on the $TiO₂/WO₃$ heterostructures, respectively.

Fig. S19 N₂ adsorption energies on different samples.

Pure WO₃ (-1.69 eV) and interfacial WO₃ in TiO₂/WO₃ heterostructures (-2.48 eV) showed more negative adsorption energies than those of pure $TiO₂$ (-0.37 eV) and interfacial TiO₂ in TiO₂/WO₃ heterostructure (-0.22 eV). This result revealed that N₂ photooxidation proceeded on the surface of WO_3 in the TiO₂/WO₃ heterostructures and interfacial charge transfer facilitated N_2 adsorption.

Fig. S20 O₂ adsorption energies on different sample surfaces.

In the $TiO₂/WO₃$ heterostructure, the interfacial $TiO₂$ showed more negative adsorption energy of O_2 (-1.12 eV) than that of interfacial WO₃ (-0.36 eV), indicating that O_2 showed preferential adsorption on the interfacial $TiO₂$ and further reduced by the photoelectrons under irradiation.

Fig. S21 The UV-Vis absorption spectra and the corresponding calibration curves of $NO₃ - N$.

The calibration curves showed good linearity.

Fig. S22 NMR spectrum of the β-Nitrostyrolene product. ¹H NMR (400 MHz, CDCl₃) δ [ppm] 8.01 (d, J= 13.6, 1H), 7.56 (m, 3H), 7.48 (m, 3H);

Fig. S23 GC spectrum of the product after the test with the Ar gas as the raw material.

No *β*-Nitrostyrolene product generated in the organic solvent system when Ar gas was used as the raw material for photocatalysis.