Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Computational screening of efficient graphene-supported transition metal single atom catalysts toward oxygen reduction reaction

Lei Li, Rao Huang, Xinrui Cao and Yuhua Wen*

Department of Physics, Xiamen University, Xiamen 361005, China.

E-mail: yhwen@xmu.edu.cn

Fig. S1. (a) Schematic structures and (b) formation energy of MN_x -G. The green, blue, and yellow spheres denote C, N, and M atoms, respectively.

-	м	E _b (eV)	E _c (eV)	М	E _b (eV)	E _c (eV)	М	E _b (eV)	E _c (eV)
•	Cr	6.91	4.14	Мо	6.45	6.36	W	8.08	8.48
	Mn	6.84	3.87	Тс	7.20	7.09	Re	7.20	7.81
	Fe	7.49	4.94	Ru	7.35	6.88	Os	8.18	8.32

Table S1. The binding energy (E_b) of MN₄-G and cohesive energy (E_c) of bulk M.

Со	7.84	5.13	Rh	7.33	5.63	lr	8.71	7.23
Ni	7.91	4.88	Pd	5.86	3.70	Pt	7.99	5.47
Cu	5.33	3.48	Ag	2.09	2.49	Au	3.20	2.98

Table S2. The adsorption height of M atom (d_1) , average M–N bond length (d_2) , and Bader charges analysis (Δq) for MN₄-G. Note that the minus sign in Δq denotes electron loss.

м	d₁ (Å)	d₂(Å)	∆q (e)			M	d. (Å)	d_(Å)	∆q (e)		
	u ₁ (, ,)		N ₄	М	G		-104	-20-1	N ₄	М	G
Cr	0.134	1.941	0.52	-1.25	0.73	Тс	0.493	1.989	0.26	-1.23	0.97
Mn	0.002	1.910	0.21	-1.28	1.07	Ru	0.469	1.968	0.17	-0.91	0.74
Fe	0.012	1.894	0.09	-1.09	1.00	Rh	0.062	1.944	0.26	-0.66	0.40
Со	0.010	1.878	0.06	-0.88	0.82	Pd	0.015	1.952	0.28	-0.71	0.43
Ni	0.009	1.883	0.02	-0.84	0.82	Ir	0.053	1.941	0.28	-0.76	0.48
Cu	0.008	1.923	0.38	-0.92	0.54	Pt	0.033	1.953	0.29	-0.75	0.46
Мо	0.825	2.045	0.25	-1.26	1.01	Au	0.033	1.967	0.15	-0.96	0.81

Table S3. Relative Energy of O_2 adsorbed on MN_4 -G. Note that the energy of the most stable configuration is defined as 0.000 eV and '--' indicates these configurations are not stable.

м	Δ <i>Ε</i> (eV)									
	Side-A	Side-B	Side-C	End-A	End-B					
Cr	0.000			0.533	0.460					
Mn	0.000			0.510	0.418					
Мо		0.000	0.068							
Тс		0.000	0.160	0.713						
Fe	0.394			0.196	0.000					
Со				0.088	0.000					
Ru		0.118			0.000					
Rh	0.845			0.086	0.000					
lr	0.697			0.339	0.000					

м			Δ <i>Ε</i> (eV)			м	Δ <i>Ε</i> (eV)				
	T ₁ T ₁ -A	T ₁ T ₁ -B	T ₁ T ₂	T_1B_1	T_1B_2		T ₁ T ₁ -A	T ₁ T ₁ -B	T ₁ T ₂	T_1B_1	T ₁ B ₂
Fe			0.298	0.000	0.048	Cr	0.315	0.000	0.770	0.976	1.048
Со		0.494	0.126	0.000	0.097	Mn	0.127	0.000	0.327	0.042	0.179
Ru	0.011	0.000	0.402	0.168	0.430	Мо	0.325	0.000		1.944	2.362
Rh	1.002	1.082	0.305	0.000	0.195	Тс	0.209	0.000	1.208	0.992	1.376
Ir	0.096	0.325	0.269	0.000	0.281						

Table S4. Relative energy of O_2 dissociated product.

Fig. S2. Distribution of exchange charges between O_2 and MN_4 -G with the isovalue of 0.006 eÅ⁻³. Purple and yellow bubbles represent positive and negative charges, respectively.

Fig. S3. Atomic structures of IS, TS, and FS for the possible path of O_2 dissociation on MN₄-G supports. The numbers in parenthesis are the energy barriers (left) and reaction energies (right) in units of eV.