Supporting Information for:

Azobenzene-based solar thermal energy storage enhanced by gold nanoparticles for rapid, optically-triggered heat release at room temperature

Liqi Dong, Yuanhao Chen, Fei Zhai, Lin Tang, Wenchao Gao, Junwen Tang, Yiyu Feng, Wei

Feng*

School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China

Corresponding author: Wei Feng

*E-mail: weifeng@tju.edu.cn

Fax: +86-22-27404824

Table of Contents

1.	¹ H NMR spectrum of <i>compound 1</i> (Figure S1)	S-3
2.	¹² C NMR spectrum of <i>compound 1</i> (Figure S2)	S-4
3.	¹ H NMR spectrum of <i>compound 2</i> (Figure S3)	S-5
4.	¹³ C NMR spectrum of <i>compound 2</i> (Figure S4)	S-6
5.	¹ H NMR spectrum of <i>compound 3 (tri</i> -azobenzene) (Figure S5)	.S-7
6.	¹³ C NMR spectrum of <i>compound 3 (tri</i> -azobenzene) (Figure S6)	.S-8
7.	Pictures of tri-Azo, AuNPs and tri-Azo@AuNPs in DMF solution and their	
	corresponding films (Figure S7)	S-9
8.	SEM images of films (Figure S8)	S10
9.	FT-IR spectra of PVA, tri-Azo and PVA/Azo (Figure S9)	S11
10.	Accelerated effect of AuNPs on cis-to-trans isomerization of tri-Azo (Figure	
	S10)	.S-12
11.	TEM image and UV-vis spectra of AuNPs (Figure S11)	.S-13
12.	STEM images of films (Figure S12)	S14
13.	Cycle stability of PVA/Azo@AuNPs STF sample (Figure S13)	S15
14.	The heating temperature required for the heat release and the maximum	
	temperature difference after heat release procedure (Table S1)	S16
15.	The volumes of AuNPs solution, PVA solution and AZO solution used for	
	preparing different films (Table S2)	S17
16.	Assignment of FT-IR spectra for PVA, tri-AZO and PVA/AZO (Table	
	S3)S18	
17.	Concentration of AuNPs (Table S4).	.S-19
18.	Equation of the first-order rate of <i>cis</i> -to- <i>trans</i> isomerization (Equation S1)	.S-20

Figure S1 ¹H NMR spectrum of *tert*-butyl 1-phenylhydrazine carboxylate

¹H NMR (400 MHz, CDCl₃) δ: 7.46 (d, 2H), 7.31 (m, 2H), 7.11 (m, 1H), 6.43 (bs, 3H), 4.44 (s, 1H), 1.5 (s, 9H).

¹³C NMR (400 MHz, CDCl₃) δ: 155.6, 143.1, 128.1, 124.2, 123.8, 77.7, 76.9, 28.3.

Figure S3 ¹H NMR spectrum of *N*'-[3,5-Bis(*N*-*tert*-butoxycarbonyl-*N*'-phen ylhydrazino)-phenyl]-*N*-phenylhydrazinecarboxylic acid *tert*- butyl ester

¹H NMR (400 MHz, CDCl₃) δ : 7.43 (d, J = 8.4 Hz, 6H), 7.21 (dd, J = 8.4, 7.2 Hz, 6H), 7.03 (t, J = 7.2 Hz, 3H), 6.43 (bs, 3H), 5.81 (s, 3H), 1.32 (s, 27H).

Figure S4 ¹³C NMR spectrum of N'-[3,5-Bis(N-tert-butoxycarbonyl-N'-phen ylhydrazino)-phenyl]-N-phenylhydrazinecarboxylic acid tert- butyl ester

¹³C NMR (400 MHz, CDCl₃) δ: 153.6, 150.1, 142.5, 128.1, 124.2, 121.8, 90.7, 82.0, 28.1.

¹H NMR (400 MHz, CDCl₃) δ: 8.58 (s, 3H), 8.02-7.80 (m, 6H), 7.58-7.50 (m, 9H).

¹³C NMR (400 MHz, CDCl₃) δ: 153.8, 152.1, 131.6, 129.1, 124.2, 118.9.

Figure S7 Photos of AuNPs, tri-Azo and tri-Azo@AuNPs in DMF solution and corresponding PVA/AuNPs, PVA/Azo and PVA/Azo@AuNPs film.

Figure S8 SEM images of PVA (A), PVA/AuNPs (B), PVA/Azo (C), and PVA/Azo@AuNPs (D) films (A and B, magnification: 5000×, inset: 10,000×; C and D, magnification: 1000×, inset: 10,000×).

Microscopically, PVA and PVA/AuNPs films were flat and compact. While, irregular small flakes distributed on the surface of PVA/Azo and PVA/Azo@AuNPs films. Such protuberant small flakes structure was ascribed to Azo molecule. As can be seen form the inset of Figure S8 C and D, under the same magnification (10,000×), the small-flake like Azo molecule in the PVA/Azo@AuNPs film looks like more swollen than those in the PVA/Azo film. This may be because the Azo molecules in the PVA/Azo@AuNPs film were gathered around each AuNP.

Figure S9 The FT-IR spectra of PVA, tri-Azo and PVA/Azo.

The FT-IR spectra of PVA, *tri*-Azo, and PVA/Azo samples were measured to elucidate their structures. The obtained results were similar to those reported in previous literature.[1-5] In particular, in the functional group region, the peak at approximately 1392–1300 cm⁻¹ was typically attributed to the -N=N- stretching vibrations.[4-7] This peak was present in *tri*-Azo and PVA/Azo samples, indicating that the *tri*-Azo is stable and is not destroyed during the preparation process. The broad peak at 3410 cm⁻¹ in the PVA spectrum was attributed to the -OH stretching vibration, which can also be observed in the PVA/Azo spectrum; however, as expected, it is not observed in Azo spectrum. Moreover, the strong peaks at approximately 3300–3000 cm⁻¹ are attributed to the =C-H stretching vibrations of the benzene ring in the Azo spectrum. Furthermore, the peaks located at 1612 and 1494 cm⁻¹ are attributed to the C=C stretching vibrations of the benzene ring in the Azo spectrum. Additional details of band assignments for PVA, *tri*-Azo and PVA/Azo are listed in Table S3.

Figure S10 Accelerated effect of AuNPs on *cis*-to-*trans* isomerization of tri-Azo. The time-evolved UV-visible absorption spectra of *tri*-Azo at room temperature with different AuNPs aqueous volumes of 100, 150, 200, 250 and 300 uL, respectively. First column: 365 nm UV light (120 mW cm⁻²) irradiation. Second column: in darkness. Third column: the corresponding first-order rate constants for *cis*-to-*trans* (κ_{rev}) transitions of the *tri*-Azo. The arrows are indicated test order.

Figure S11 (A) TEM image of AuNPs; (B) UV-vis spectra of different volumes of AuNPs.

Figure S12 STEM images of PVA/ AuNPs (A) and PVA/Azo@AuNPs (B and C) film (magnification: A is 1.2M×, B is 1.0M×, C is 2.0M×)

AuNPs in PVA/AuNPs films were round particles with sharp edges, while AuNPs in PVA/Azo/AuNPs films were round particles with shadow on its edges. The shadow represented Azo molecules, which were gathered around AuNPs.

Figure S13 Cycle stability of PVA/Azo@AuNPs STF sample. (A) is the temperature changes before and after discharge procedure of the PVA/Azo@AuNP STF sample. (B) is the temperature increases during the heat release of the sample.

Reported Azo-STFs	stimulus of heat release	Max ΔT (°C)	Ref.
Polymer-templated AZO	About 100 °C	10	[8]
AzoPMA	Heat over 100 °C	No data	[9]
rGO–bisAzo	Heating to 180 °C	15	[10]
AZO-CNTs	Heating to 150 °C	10	[11]
tri-Azo/rGO	80 °C	7.1	[2]
Azoheteroarene	60 °C	4.1	[1]
Polynorbornene-	hive light at 25 0C	1.5	[2]
templated AZO	olue light at 23 °C	1.5	[3]
Fabric templeted AZO	Heat over 60 °C	2	[12]
rauric-templated AZO	Blue light	3-4	— [12]

Table S1 The heating temperature required for the heat release and the maximum temperature difference after heat release procedure.

The films	solutions			
	PVA aqueous	AuNPs aqueous	Azo in DMF	
PVA	2 mL	0	0	
PVA/AuNPs	2 mL	100 µL	0	
PVA/Azo	2 mL	0	500 μL	
PVA/Azo@AuNPs	2 mL	100 µL	500 μL	

Table S2 The volumes of AuNPs solution, PVA solution and Azo solution used for preparing different films.

	Assignment		
Azo	PVA	PVA/Azo	Assignment
	3410	3402	-OH (v)
3330		3267	C-H (v)
2979	2945	2978	$CH_2(v_{as})$
1710, 1612, 1494	1737	1706, 1612, 1494	-OH (δ) and C=C (ν)
1392, 1334, 1303		1342, 1299	-N=N- (v)
1155	1107	1151	C-N (v) or C-O (v)
758, 690		759, 690	=С-Н (ү)

Table S3 Assignment of FT-IR spectra for PVA, tri-Azo and PVA/Azo.

v represents stretching vibration (v_a symmetrical; v_{as} asymmetrical), γ represents out-of-plane deformation vibration and δ represents in-plane deformation vibration.

Table S4 Concentration of AuNPs.

volume of AuNPs aqueous (uL)	Concentration of AuNPs (mol L ⁻¹)
100	5.83×10 ⁻¹⁰
150	8.49×10 ⁻¹⁰
200	1.19×10 ⁻⁹
250	1.41×10 ⁻⁹
300	1.64×10 ⁻⁹

Equation S1

$$\ln\left(\frac{A_{\infty} - A_t}{A_{\infty} - A_0}\right) = -\kappa_{rev}t$$

 A_0 is the absorption intensity of Azo and *tri*-Azo@AuNPs at metastable state (*cis*-rich) irradiated by UV light, A_t is the absorption intensity of Azo and *tri*-Azo@AuNPs reversing for "t" time and A_∞ is the absorption intensity of Azo and *tri*-Azo@AuNPs after complete *cis*-trans reversion.

Reference

[1] Q. Yan, Y. Zhang, Y. Dang, Y. Feng, W. Feng, Solid-state high-power photo heat output of 4-((3,5-dimethoxyaniline)-diazenyl)-2- imidazole/graphene film for thermally controllable dual data encoding/reading, Energy Storage Materials 24 (2020) 662-669.

[2] W.X. Yang, Y.Y. Feng, Q.Y. Si, Q.H. Yan, P. Long, L.Q. Dong, L.X. Fu, W. Feng, Efficient cycling utilization of solar-thermal energy for thermochromic displays with controllable heat output, Journal of Materials Chemistry A 7 (2019) 97-106.

[3] L.X. Fu, J.X. Yang, L.Q. Dong, H.T. Yu, Q.H. Yan, F.L. Zhao, F. Zhai, Y.H. Xu, Y.F. Dang, W.P. Hu, Y.Y. Feng, W. Feng, Solar Thermal Storage and Room-Temperature Fast Release Using a Uniform Flexible Azobenzene-Grafted Polynorborene Film Enhanced by Stretching, Macromolecules 52 (2019) 4222-4231.

[4] C.Q. Qin, Y.Y. Feng, W. Luo, C. Cao, W.P. Hu, W. Feng, A supramolecular assembly of cross-linked azobenzene/polymers for a high-performance light-driven actuator, Journal of Materials Chemistry A 3 (2015) 16453-16460.

[5] C.Q. Qin, Y.Y. Feng, H.R. An, J.K. Han, C. Cao, W. Feng, Tetracarboxylated Azobenzene/Polymer Supramolecular Assemblies as High-Performance Multiresponsive Actuators, Acs Applied Materials & Interfaces 9 (2017) 4066-4073.

[6] W. Luo, Y.Y. Feng, C. Cao, M. Li, E.Z. Liu, S.P. Li, C.Q. Qin, W.P. Hu, W. Feng, A high energy density azobenzene/graphene hybrid: a nano-templated platform for solar thermal storage, Journal of Materials Chemistry A 3 (2015) 11787-11795.

[7] W. Luo, Y.Y. Feng, C.Q. Qin, M. Li, S.P. Li, C. Cao, P. Long, E.Z. Liu, W.P. Hu, K. Yoshino, W. Feng, High-energy, stable and recycled molecular solar thermal storage materials using AZO/graphene hybrids by optimizing hydrogen bonds, Nanoscale 7 (2015) 16214-16221.

[8] D. Zhitomirsky, E. Cho, J.C. Grossman, Solid-State Solar Thermal Fuels for Heat Release Applications, Advanced Energy Materials 6 (2016) 1502006.

[9] S.P. Jeong, L.A. Renna, C.J. Boyle, H.S. Kwak, E. Harder, W. Damm, D. Venkataraman, High Energy Density in Azobenzene-based Materials for Photo-Thermal Batteries via Controlled Polymer Architecture and Polymer-Solvent Interactions, Scientific Reports 7 (2017) 17773.

[10] X.Z. Zhao, Y.Y. Feng, C.Q. Qin, W.X. Yang, Q.Y. Si, W. Feng, Controlling Heat

Release from a Close-Packed Bisazobenzene-Reduced-Graphene-Oxide Assembly Film for High-Energy Solid-State Photothermal Fuels, ChemSusChem 10 (2017) 1395-1404.

[11] Y. Jiang, J. Huang, W. Feng, X. Zhao, T. Wang, C.H. Li, W. Luo, Molecular regulation of nano-structured solid-state AZO-SWCNTs assembly film for the highenergy and short-term solar thermal storage, Solar Energy Materials and Solar Cells 193 (2019) 198-205.

[12] J. Hu, S. Huang, M.M. Yu, H.F. Yu, Flexible Solar Thermal Fuel Devices: Composites of Fabric and a Photoliquefiable Azobenzene Derivative, Advanced Energy Materials (2019) 1901363.