Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Low defect potassium cobalt hexacyanoferrate as a superior cathode for aqueous potassium ion batteries

Kunjie Zhu, Zhaopeng Li, Ting Jin, and Lifang Jiao*

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCast), College of Chemistry, Nankai University, Tianjin 300071, China E-mail: jiaolf@nankai.edu.cn (L.J.)

*Corresponding author

Supplemental Figures

Fig. S1 EDX analysis (SEM) of CoHCF.

Fig. S2 EDX analysis (TEM) of CoHCF.

Table S1 A performance comparison for Co-based PBAs investigated in different electrolytes for	r
potassium ions energy storage	

	1	6, 6	
Materialref	Electroly	Capacity at lower current	Capacity at higher
	te	density	current density
		mA h g ⁻¹ /mA g ⁻¹ (cycles)	mA h g ⁻¹ /mA g ⁻¹ (cycles)
This work	Aqueous	83.6/20(200)	53.8/600 (1000)
K ₂ Ni _{0.4} Co _{0.6} (CN) ₆ ^[1]	Organic	84/20(50)	75.6/20(300)
$K_x CoFe(CN)_6^{[2]}$	Organic	38.4/20(15)	none

Fig. S3 Galvanostatic intermittent titration technique curves of the CoHCF electrode during the second cycle.

Fig. S4 Electrochemical impedance spectra of the CoHCF electrode.

Fig. S5 (a) The full survey XPS date of the CoHCF sample at the pristine state. The high resolution Co 2p spectra (b), Fe 2p spectra (c), K 2p spectra (d), C 1s spectra (e) and N 1s spectra (f).

Fig. S6 The high resolution Co 2p spectra (a) and Fe 2p spectra (b) of the CoHCF when charged to 0.71V in the first cycle.

Fig. S7 The high resolution Co 2p spectra (a) and Fe 2p spectra (b) of the CoHCF when charged to 1.1V in the first cycle.

Fig. S8The high resolution Co 2p spectra (a) and Fe 2p spectra (b) of the CoHCF when discharged to 0.65V in the first cycle.

Fig. S9 The high resolution Co 2p spectra (a) and Fe 2p spectra (b) of the CoHCF when discharged to 0V in the first cycle.

References :

- 1. B. Huang; Y. Shao; Y. Liu; Z. Lu; X. Lu; S. Liao, ACS Appl. Energy Mater. 2019, 2, 6528-6535.
- 2. X. Wu; Z. Jian; Z. Li; X. Ji, Electrochem. Commun. 2017, 77, 54-57.