Electronic supplementary information (ESI)

Pinning ultrasmall greigite nanoparticles on graphene for effective

transition-metal-sulfide supercapacitors in an ionic liquid

electrolyte*

Smita Talande,^{a,b} Aristides Bakandritsos,^{a,c*} Lukáš Zdražil,^{a,d} Petr Jakubec,^a Elmira Mohammadi,^a Ondřej Tomanec,^a Michal Otyepka,^a Volker Presser,^{e,f} Radek Zbořil,^{a,c,g} Jiří Tuček^{h,*}

- ^a Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
- ^b Department of Experimental Physics, Faculty of Science, Palacký University, 17. listopadu 1192/12,
 779 00 Olomouc, Czech Republic
- ^c Nanotechnology Centre, VŠB–Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
- ^d Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, 779
 00 Olomouc, Czech Republic
- ^e Department of Materials Science & Engineering, Saarland University, Campus D2 2, 66123
 Saarbrücken, Germany
- ^{*f*} INM Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- ^{*g*} Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- ^h Department of Mathematics and Physics, Faculty of Electrical Engineering and Informatics, University of Pardubice, náměstí Čs. legií 565, 530 02 Pardubice, Czech Republic
- * Corresponding authors' e-mail addresses: <u>a.bakandritsos@upol.cz</u>; jiri.tucek@upce.cz

Figure S1. (a) X-ray photoelectron emission spectra of $GCNFe_3S_4$ hybrid and (b) peak deconvolution for the Fe region before electrochemical testing.

Figure S2. (a) Thermogram and (b) evolved gas analysis under air for Fe_3S_4 and $GCNFe_3S_4$ hybrid (c) TEM image of bare Fe_3S_4 .

Figure S3. (a) Cyclic voltammograms from the GCNFe₃S₄ symmetric cell in LiPF₆ dissolved in propylene carbonate (PC) and LiPF₆ dissolved in ethylene carbonate (EC) measured at a scan rate of 100 mV·s⁻¹. (b) Cyclic voltammograms for GCNFe₃S₄//GCN Fe₃S₄ in LiTFSI dissolved in EMIMBF₄ and LiPF₆ dissolved in EC at a scan rate 100 mV·s⁻¹. (c) Cyclic voltammograms for asymmetric GCNFe₃S₄//AC of total active mass 13 mg and symmetric GCNFe₃S₄//GCNFe₃S₄ of total active mass 4.1 mg in EMIMBF₄ at a scan rate 10 mV·s⁻¹.

Figure S4. (a) Cyclic voltammograms at low scan rates and (b) Cyclic voltammograms normalized to scan rates (low and high), for $GCNFe_3S_4$ hybrid using EMIMBF₄+LiTFSI as an electrolyte in the symmetric cell.

Figure S5. Galvanostatic charge/discharge curves at different current densities obtained for $GCNFe_3S_4$ hybrid using 6 M KOH as an electrolyte in a symmetric cell.

Figure S6. Cycling performance of $GCNFe_3S_4$ at a specific current of $5 A \cdot g^{-1}$ in an organic electrolyte 1 M LiPF₆ in propylene carbonate.

Figure S7 (a) Photos showing the colloidal stability of $GCNFe_3S_4$ material and changes in the color of the two electrolytes: LiPF₆ in propylene carbonate (PC, left) and in the ionic liquid with 1 M LiTFSI (IL, right) in a time-lapse of 9 days. Electrolyte photoluminescence (PL) map of (b) pure LiPF₆ in PC (c) LiPF₆ in PC after 9 d interaction with GCNFe₃S₄, (d) pure IL+ LiTFSI, and (e) IL+ Li- salt after 9 d (days) interaction with GCNFe₃S₄.

Figure S8. X-ray photoelectron emission spectra for the Fe region with deconvoluted components indicating areal% for Fe^{3+} and $Fe^{2+/3+}$ (a) before and (b) after electrochemical cycling.

Figure S9. (a) Bode plot of GCNFe₃S₄ before and after electrochemical cycling. (b) Equivalent circuit used for fitting the impedance spectra; before cycling shows source resistance $R_s = 2.8 \Omega$, charge transfer resistance $R_{ct} = 1.6 \Omega$. (c) The respective equivalent circuit after cycling shows $R_s = 3.3 \Omega$ and $R_{ct} = 1.18 \Omega$.

Figure S10. Galvanostatic charge/discharge curves for $GCNFe_3S_4$ at a specific current of 5 A·g⁻¹ for low (total 4.2 mg; that is per area 0.9 mg·cm⁻²) and high (total 15.6 mg; that is per area 3.5 mg·cm⁻²) electrode mass loadings. For the calculation of the performance, the IR drop was excluded.

Table S1. Comparisons of supercapacitors (full-cells only) from literature. The literature-given values appear in black. The recalculated values include the mass of the current collectors (note ⁱ). [ΔV : operating cell-voltage; *I*: specific current; *m* active material mass; *m*_T: total mass (mass of active material + current collectors); *E*: specific energy; *P*: specific power; *C*: capacitance; *t*: discharge time; **MW**: microwave; **HT**: hydrothermal. The units are as reported in the header row of the table unless otherwise stated in the specific cells.]

Anode//			Given	Recalcu- lated	Giv	ven	Recald	ulated	C% retention	С%	Electrolyte/ synthesis methods /current collectors/	f.										
	Cathode 4		1	1	Ε	Ρ	E	Ρ	vs I	retention	recalculation details	l se										
			A g ⁻¹	A g ⁻¹	Wh kg ⁻¹	Nh kg⁻¹ kW kg⁻²	Wh kg ⁻¹	kW kg ⁻¹		vs cycling												
1	AC//Co ₉ S ₈ -	1.7	-	-	20	0.8	-	-	54% at	84.4% at 1000 th	1 M aq. KOH, HT growth on Ni foam (34 mg cm ⁻²). ^[ii]	1										
	NSA		5		CalculatedGiverRecalue techC% retention vs /C% retention vs /C% retention vs /C% retention 																	
			1		58	1	1	72% at 86% at		2 M KOH, multi-step, high temp. treatment, Ni foam												
2	@C	1.6	1.6	5	0.8			8	0.6	12% dl	10000 th	Civen $m = 10/2$ mg em ² . From Fig. 5h, e twee colculated	2									
			18	2.8	38	17.2	6.5	2.2	18 A g -	cycle	Given $m = 10//3$ mg cm ⁻ . From Fig. 50, c t was calculated.											
2	Bi ₂ S ₃ /S-NCN	1 25	1 25 8 -	-	-	16.4	53	_	_	69% at	118% at 6	6 M KOH, multi-step synthesis, HT growth on the current collector	3									
3	F//S-NCNF	1.55	0		10.4	5.5	-	-	8 A g ⁻¹	2000 th	Counter-el. mass not given											
	GCo _{0.33} Fe _{0.7}		-		66.8	0.3	-	-	-	100% at	3 M KOH, Ni foam, HT synthesis											
4	S₂//SG CoNiAl	1.6	5	0.3	13	29	1.9	0.3	-	1000 th cycle	Given $m = 2.5$ mg cm ⁻² . From Fig. 8c, t was calculated	4										
_													1		6.5	0.5	-	-	-	-	3.5 M KOH, Ni foil, HT synthesis	5
5	FeS ₂ //FeS ₂	0.9	3	0.1	1.5	1.3 ⁱⁱⁱ	0.08	0.07	-	-	Given $m = 1.9//1.9$ mg. From Fig. 13b t was calculated											
	PGO/Eas//			, 0.02 A cm ⁻²					-	152% at	2 M KOH, HT growth on Fe foil (of mass 0.7 mg ^{iv})											
6	Ni(OH) ₂	1.8	4.7 A g ⁻¹	3.4	19.9	4.2	8.1	3	-	1000 th cycle	Given <i>m</i> =3//1.3 mg. From Fig. 9b, <i>t</i> was calculated.	6										

ⁱ Energy and power values are standardized on the two-electrode metrics, as described in the experimental part.

ⁱⁱ A typical value for 80 μ m thick Ni foam is 34 mg·cm⁻² (as obtained from MTI Corporation, see:

<u>http://www.mtixtl.com/NickelFoamforBatteryCathodeSubstrate300mmlengthx80mmwidthx0.0.aspx</u>). Current (*I*) was first calculated from $C = I \cdot t/m \cdot \Delta V$, since C_m , m, t, ΔV are known. Then, we replaced m by the total mass of electrode (*i.e.*, active material + Ni foam), to calculate C for the total electrode mass.

iii Calculated *E* and *P* using Fig. 13b at *I* $3 \land g^1$ then calculated performance at total electrode mass level.

^{iv} Considering Fe density (7.8 g·cm⁻³) and a very thin 1 μm Fe foil (Goodfellow, FE000050) mass is obtained (0.7 mg).

FeS ₂ /GNS, 7 Ni(OH) ₂ @	'/ C 1.7	15	-	27	12.6	_	_	37% at 15 A g⁻¹	86% at 5000 th	2 M KOH, Ni foam, MW synthesis	
0 ₉ S ₈								calculated	cycle	Solid-state supercapacitor. ^[v]	
rGO ₁₀₀ -				34.1 ^{vi}	8			700/ -+	90% at	3M KOH; HT synthesis; Ni foam	
8 CNT ₅₀ - Co ₃ S ₄ //N	1.6 6	10	1.17	43.5	6.9	3.8	0.9	76% at 10 A g ⁻¹	3000 th cycle	m=3 mg cm ⁻² for 1 st el., and mass ratio 0.54, hence mass of 2 nd el. =5.55 mg cm ⁻² . ^[vi]	8
NiFoS, /3D	c l							70% at	82% at	6 M KOH; MW synthesis	
9 G//3DSG	1.6	10	-	31.6	2.2	-	-	10 A g ⁻¹	5000 th cycle	No data given to calculate performance based on m_{T} .	9
Fe-Co-								62% at	90% at	1 M KOH, HT growth on Ni foam (2x2 cm ²)	
¹⁰ S/NF//rG	D ^{1.6}	10	0.6	13.3	5.5	0.8	0.5	10 A g ⁻¹	5000 th cycle	$m = 2.4//2.1 \text{ mg cm}^{-2}$. From Fig. 7c, t was calculated	10
RGO/ Fe ₂ O)3							20% at	83% at	Lower performance; HT growth on Ni foam (2×4 cm ²)	
11 //CuCo ₂ O2 CuO	/ 1.6	10	0.36	9.1	8	2.1	1.8	10 A g ⁻¹	5000 th cycle	<i>t</i> was obtained from given <i>C</i> at max. $I = 10 \text{ A g}^{-1}$. Given <i>m</i> is 7.9 mg cm ⁻² on +ve electrode. ^[vii]	11
Fe ₂ O ₃ -QDs	-							80% at 100 A	74% at 12000 th	Lower performance, HT synthesis on carbon cloth	12
12 3D GF //3 HPG	D 1.6	20	1.8	48	16	6.7	2.2	g ⁻¹	cycle	Given <i>I</i> was based on <i>m</i> only (2.0 mg cm ⁻²). ^[viii]	12
Porous								40% at	98% at	Use of Ni foam and carbon cloth. HT synthesis	
13 Mn ₃ O ₄ //Fo O ₄	e ₃ 2	30	3.5	30	30	3.5	3.5	30 A g ⁻¹	30000 th cycle	Given values based on <i>m</i> only (2.5 mg cm ⁻²) el. area=2 cm ² and electrode mass ratio is $1:1.5$. ^[ix]	13

^v The TMS are also showed promising energy and power densities for solid state supercapacitors, however, there rate performance needs further improvement as well the improvement on use of low mass current collector is required.

 v^i t was calculated from the given capacitance value (96 F·g⁻¹) at 10 A·g⁻¹, E and P were then recalculated.

^{vii} Given values are based on *m* only (7.6 mg·cm⁻² and 3.89 mg·cm⁻²); areal density of Ni foam (38 mg·cm⁻²) and area ($2 \times 4 \text{ cm}^2$) are provided. Hence total mass of Ni foam is 304 mg. Then, we replaced *m* by the total mass of electrode (i.e., active material + Ni foam), to calculate C_m for the total electrode mass.

^{viii} Given *m* is ~2.2 mg·cm⁻² per electrode. The area of carbon cloth is 1.54 cm², considering the mass 13.5 mg·cm⁻² (as obtained from Fuel cell store, see for instance: <u>http://www.fuelcellstore.com/fuel-cell-components/gas-diffusion-layers/carbon-cloth/avcarb-1071-hcb</u>). The mass of carbon cloth is 20.3 mg per electrode. Using, galvanostatic charge/discharge cycling (Fig. S6), we obtained *t*, *I* at $I_{d,m}$ 20 A·g⁻¹.

^{ix} Using reported values for *I*, *C* and *m*, we calculated *t* and then applied current *I*. From these values the performance based on *m*_T was possible to recalculate considering one electrode with carbon cloth and the other with Ni foam (for mass of carbon cloth and Ni foam see also note [ii]

14	FeOOH//Ni MoO4	1.7	10	11.3	12.7	4.9	14.4	5.6	67% at 22.5 A g ⁻¹	80.8% at 10000 th cycle	Use of carbon cloth, HT & electrochemical treatment for obtaining the active FeOOH phase, HT growth of NiMoO₄ on Ni foam	14
					7	1.8					Given values are based on full device mass. We recalculated the performance based on m_{T} . ^[X] Given <i>m</i> is 9 mg·cm ⁻² (first row) and]
											1.6 mg⋅cm ⁻² (second row).	
Tł	The FeOOH//NiMoO ₄ system was the best performing iron oxide-based supercapacitor among the state-of-the-art, which was identified in the recent publication (Table											
15	G(CN)ak2	3.5	-	2.9	-	-	5.2	5	-	-	Given values are based on $m_{\rm T}$	15

^x The given values correspond to high mass loading (24.5 mg) and reported in Fig. 13b of this reference. Our recalculation was done excluding the mass of the membrane separator (given in the peer review file; response to comment F from reviewer#1).

Active mass level	Total electrode mass level	Active ma	ass level	Total electro	Comments		
1	I	Ε	Р	Ε	Р		
A g ⁻¹	A g ⁻¹	Wh kg⁻¹	kW kg⁻¹	Wh kg ⁻¹	kW kg⁻¹		
1	0.7	37	2	6.3	0.3		
2	1.4	35.4	35.4 3.5 6.0 (0.6	Low mass	
5	3.4	32.4	8.8	5.5	1.5	loading of 0.9 mg \cdot cm ⁻² (total active mass is	
8	5.5	30.3	14.2	5.2	2.4		
10	6.8	29.4	17.7	5.0	3.0		
15	10.2	27.3	26.5	4.7	4.5	4.2 mg)	
20	20 13.6		35.4	4.3	6.0		
	0.5	35	2	17.4	0.9		
1		30 µWh∙cm⁻²	1.5 mW∙cm ⁻²				
		49 mWh∙cm⁻³	2.4 W·cm⁻³			High mass	
2	1.0	30	3	14.9	1.7	$3.5 \text{ mg} \cdot \text{cm}^{-2}$	
E	2.5	20	8	9.9	3.8	(total active	
5		28 mWh∙cm⁻³	11 W∙cm ⁻³			15.6 mg)	
8	4.0	13	11	7.0	5.0		
10	5.0	10	13	5.0	7.0		

Table S2. Specific energy and power of GCNFe₃S₄//GCNFe₃S₄ cell at different specific currents.^a

^aTo compare the results with other literature reports, where the reported values are calculated using linear equations, we reported the performance values based on the same linear equations, as described in Table S2. Nevertheless, in Table S3, the performance was also reported based on integral equations (see experimental part), for the sake of accuracy.

Active mass level	Total electrode mass level	Active ma	ass level	Total electrode	Comments	
1	I	E	Р	E	Р	
A g ⁻¹	A g ⁻¹	Wh kg⁻¹	kW kg ⁻¹	Wh kg ⁻¹	kW kg⁻¹	
1	0.7	31	2	6.6	0.3	
2	1.4	29	3	6.3	0.6	Low mass
5	3.4	26	7	5.7	1.5	loading of
8	5.5	24	11	5.3	2.5	0.9 mg·cm ⁻²
10	6.8	23	14	5.0	3.0	(total active
15	10.2	21	20	4.5	4.4	mass is 4.2 mg)
20	13.6	18	26	4.0	5.7	
	0.5	30	1.4	14	0.7	
1		41 mWh∙cm⁻³	2 W·cm⁻³			High mass
2	1.0	24	2.7	12	1.3	loading of
5	2.5	15	5.6	7	2.8	3.5 mg·cm ⁻²
5		21 mWh⋅cm⁻³	8 W∙cm⁻³			(total active
8	4.0	9	7.5	5	3.8	mass is 15.6 mg)
10	5.0	6	8.0	3	4.0	

Table S3. Specific energy and power of $GCNFe_3S_4//GCNFe_3S_4$ cell at different specific currents using equations for non-linear galvanostatic charge-discharge plots.

Supporting References

- 1 X. Han, K. Tao, D. Wang and L. Han, Nanoscale, 2018, 10, 2735–2741.
- 2 S. Sun, J. Luo, Y. Qian, Y. Jin, Y. Liu, Y. Qiu, X. Li, C. Fang, J. Han and Y. Huang, *Adv. Energy Mater.*, 2018, **8**, 1801080.
- 3 W. Zong, F. Lai, G. He, J. Feng, W. Wang, R. Lian, Y.-E. Miao, G.-C. Wang, I. P. Parkin and T. Liu, *Small*, 2018, **14**, 1801562.
- 4 W. Liu, H. Niu, J. Yang, K. Cheng, K. Ye, K. Zhu, G. Wang, D. Cao and J. Yan, *Chem. Mater.*, 2018, **30**, 1055–1068.
- 5 S. Venkateshalu, P. Goban Kumar, P. Kollu, S. K. Jeong and A. N. Grace, *Electrochimica Acta*, 2018, **290**, 378–389.
- 6 C. Zhao, X. Shao, Z. Zhu, C. Zhao and X. Qian, *Electrochimica Acta*, 2017, 246, 497–506.
- 7 Z. Sun, H. Lin, F. Zhang, X. Yang, H. Jiang, Q. Wang and F. Qu, *J. Mater. Chem. A*, 2018, **6**, 14956–14966.
- 8 A. Mohammadi, N. Arsalani, A. G. Tabrizi, S. E. Moosavifard, Z. Naqshbandi and L. S. Ghadimi, *Chem. Eng. J.*, 2018, **334**, 66–80.
- 9 T. Ma, H. Liu, Y. Wang and M. Zhang, *Electrochimica Acta*, 2019, **309**, 1–10.
- 10 K. Le, M. Gao, W. Liu, J. Liu, Z. Wang, F. Wang, V. Murugadoss, S. Wu, T. Ding and Z. Guo, *Electrochimica Acta*, 2019, **323**, 134826.
- 11 Y. Wang, C. Shen, L. Niu, R. Li, H. Guo, Y. Shi, C. Li, X. Liu and Y. Gong, J. Mater. Chem. A, 2016, 4, 9977–9985.
- 12 Y. Li, H. Zhang, S. Wang, Y. Lin, Y. Chen, Z. Shi, N. Li, W. Wang and Z. Guo, *J. Mater. Chem. A*, 2016, **4**, 11247–11255.
- 13 J. W. Choi, I. W. Ock, K.-H. Kim, H. M. Jeong and J. K. Kang, Adv. Funct. Mater., 2018, 28, 1803695.
- 14 K. A. Owusu, L. Qu, J. Li, Z. Wang, K. Zhao, C. Yang, K. M. Hercule, C. Lin, C. Shi, Q. Wei, L. Zhou and L. Mai, *Nat. Commun.*, 2017, **8**, 14264.
- 15 S. V. Talande, A. Bakandritsos, P. Jakubec, O. Malina, R. Zbořil and J. Tuček, *Adv. Funct. Mater.*, 2019, **29**, 1906998.