Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

Triple-Cation Low-Bandgap Perovskite Thin-Films for High-Efficiency Four-Terminal All-Perovskite Tandem Solar Cells

Somayeh Moghadamzadeh,^{a,b,*} Ihteaz M. Hossain,^{b,a} The Duong,^c Saba Gharibzadeh,^{b,a} Tobias Abzieher,^{a,b} Huyen Pham,^d Hang Hu,^{b,a} Paul Fassl,^{b,a} Uli Lemmer,^{a,b} Bahram Abdollahi Nejand,^{b,a,*} and Ulrich W. Paetzold^{b,a,*}

^a Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Engesserstrasse 13,

76131, Karlsruhe, Germany

^b Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT),

Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe, Germany

^c Research School of Electrical, Energy and Materials Engineering, The Australian National

University, Canberra 2601, Australia

^d Department of Electronic Materials Engineering, Research School of Physics, The Australian

National University, Canberra 2601, Australia

* To whom correspondence should be addressed email: <u>somayeh.moghadamzadeh@kit.edu</u>, <u>bahram.abdollahi@kit.edu</u>, <u>ulrich.paetzold@kit.edu</u>

Fig. S1. (a) Cross-sectional SEM image of a PSC with a layer stack of glass / ITO / PTAA / $C_{s_x}(FA_{0.8}MA_{0.2})_{(1-x)}Sn_{0.5}Pb_{0.5}I_3$ / PCBM / C_{60} / BCP / Ag, for which x = 0 (denoted as Cs0%). The scalebar on the bottom-right is indicative of 300 nm. (b) Absolute values of stabilized power conversion efficiency (SPCE) at the MPP tracking conditions for 120 min, (c) current-density–voltage (J-V) scans measured at a fixed rate of 0.6 V/s from the open-circuit voltage (V_{OC}) to the short-circuit current (J_{SC}) (solid lines) and from J_{SC} to V_{OC} (dashed lines) under AM 1.5G illumination (100 mW/cm²) at 25°C, of the best performing LBG PSCs prepared with different Cs concentrations varying from 0% to 10% (denoted as Cs0% to Cs10%). Comparing figure a with b demonstrates that the actual PCEs of the PSCs lie in the middle between the forward and backward scans. (d) the external quantum efficiency (EQE) of devices with perovskite thin-films prepared with different Cs concentrations.

Fig. S2. Stabilized power conversion efficiency (SPCE) at 0 min (when the lamp is switched on), and after 5 and 120 min of maximum power point (MPP) tracking, derived from six low-bandgap perovskite solar cells (LBG PSCs) with different Cs concentrations varying from 0% (top) to 10% (bottom) which were identically-prepared in different batches. The initial values (at 0 min) are normalized to 1.

Fig. S3. (a) Power conversion efficiency (PCE), (b) fill factor (FF), (c) short-circuit current (J_{SC}), and (d) open-circuit voltage (V_{OC}) of 30 low-bandgap perovskite solar cells (LBG PSCs) with different Cs concentrations varying from 0% to 10%, identically-prepared in 10 different batches. The black dots show the average values.

Table S1. Photovoltaic parameters (champion (Ch.) and average (Ave.) values) of low-bandgap perovskite solar cells (LBG PSCs) with different Cs concentrations varying from 0% to 10%, derived from current-density–voltage (J-V) scans measured at a fixed rate of 0.6 V/s from the open-circuit voltage (V_{OC}) to the short-circuit current (J_{SC}) (backward scan) and from J_{SC} to V_{OC} (forward scan) under AM 1.5G illumination (100 mW/cm²) at 25°C. The average (Ave.) values are derived from 30 LBG PSCs identically-prepared in 10 different batches.

Cs	Scan	V _{oc} (V)		J _{SC} (mA/cm ²)		FF (%)		PCE (%)	
concentration	direction	Ch.	Ave.	Ch.	Ave.	Ch.	Ave.	Ch.	Ave.
Cs0%	Backward	0.79	0.77	30.8	29.1	70.6	65.8	17.2	14.8
	Forward	0.77	0.76	30.9	28.9	63.3	60.5	15.2	13.2
Cs1%	Backward	0.75	0.76	30.7	29.8	69.2	67.3	16.0	15.3
	Forward	0.74	0.75	30.6	29.7	63.4	62.0	14.3	13.8
Cs2.5%	Backward	0.78	0.78	32.5	30.6	71.8	68	18.2	16.1
	Forward	0.77	0.77	32.5	30.4	66.5	63.7	16.7	14.8
Cs5%	Backward	0.75	0.75	29.7	29.6	68.9	64.7	15.4	14.4
	Forward	0.75	0.75	29.6	29.3	65.7	61.2	14.5	13.3
Cs10%	Backward	0.72	0.72	28.3	27.8	65.3	62.0	13.3	12.3
	Forward	0.72	0.73	28.3	26.5	61.4	61.1	12.4	11.9

Fig. S4. Power conversion efficiency (PCE), fill factor (FF), short-circuit current (J_{SC}), and open-circuit voltage (V_{OC}) of champion PSCs (from different batches) with different Cs concentrations measured on day 1 (day of device completion) and day 2 (after one night of storage in a dark inert atmosphere).

Fig. S5. (a) X-ray diffraction (XRD) peaks assigned to (114)/(310) planes of the $Cs_x(FA_{0.8}MA_{0.2})_{(1-x)}Sn_{0.5}Pb_{0.5}I_3$ lowbandgap perovskite thin-films shifting to higher diffraction angles by increasing *x*. (b) X-ray photoelectron spectroscopy (XPS) spectra of the Cs $3d_{5/2}$ core level of the low-bandgap perovskite thin-films samples with different Cs concentrations varying from 0% to 2.5% and 5%.

Fig. S6. XRD patterns collected from PbI_2 , SnI_2 , and $Sn_{0.5}Pb_{0.5}I_2$ thin-films (inset compares the position of the main peak of the three thin-films).

Fig. S7. (a) Absorptance spectra (A), (b) Tauc plot, (c) the average thickness $(d_{Ave.})$, and (d) picture of $Cs_x(FA_{0.8}MA_{0.2})_{(1-x)}Sn_{0.5}Pb_{0.5}I_3$ thin-films prepared with excess Sn and Pb for different Cs concentrations of x = 0%, 3%, 7.5%, and 12.5%. All the thin-films are deposited on glass substrates. The average thickness $(d_{Ave.})$ of each thin-film is an average of ten values obtained from two different samples on five different spots on each.

Fig. S8. X-ray diffraction (XRD) patterns of $Cs_1Sn_{0.5}Pb_{0.5}I_3$ perovskite thin-film.

S9. UV-vis absorbance spectra and Tauc plots of a double-cation $Cs_{0.17}FA_{0.83}Pb(I_{0.76}Br_{0.24})_3$ perovskite thin-film with a bandgap of $E_g = 1.65$ eV (a and b), and a triple cation $Cs_{0.025}(FA_{0.8}MA_{0.2})_{0.075}Sn_{0.5}Pb_{0.5}I_3$ low-bandgap perovskite thin-film with a bandgap of $E_g = 1.26$ eV (c and d), both deposited on glass substrates.

Fig. S10. Transmittance (T), reflectance (R), and absorptance (A) spectra of (a) a semitransparent perovskite filter composed of a double-cation $Cs_{0.17}FA_{0.83}Pb(I_{0.76}Br_{0.24})_3$ perovskite thin-film with a bandgap of $E_g = 1.65$ eV, and (b) a triple cation $Cs_{0.025}(FA_{0.8}MA_{0.2})_{0.075}Sn_{0.5}Pb_{0.5}I_3$ low-bandgap perovskite thin-film with a bandgap of $E_g = 1.26$ eV, deposited on PTAA-coated ITO.

Fig. S11. Transmittance (T), reflectance (R), and absorptance (A) spectra of a semitransparent perovskite filter and a semi-transparent top PSC, composed of a double-cation $Cs_{0.17}FA_{0.83}Pb(I_{0.76}Br_{0.24})_3$ perovskite thin-film with a bandgap of $E_g = 1.65$ eV. The relative difference in transmittance and reflectance on average (derived from three filters and three PSCs) is equal to $\pm 1.1\%$ and $\pm 0.1\%$, respectively (weighted to AM1.5G).

Fig. S12. (a) Current-density-voltage (J-V) scans measured at a fixed rate of 0.6 V/s from the open-circuit voltage (V_{OC}) to the short-circuit current (J_{SC}) , and (b) maximum power point (MPP) tracking measurements of a single-junction semi-transparent top PSC ($E_g = 1.65 \text{ eV}$), a single-junction filtered LBG bottom PSC ($E_g = 1.26 \text{ eV}$) covered with an anti-reflection PDMS foil, under AM 1.5G illumination (100 mW/cm²) at 25°C. PCE_{4T} and SPCE_{4T} are the calculated PCE and stabilized PCE derived from the J-V scans and MPP tracking measurements for the champion 4T all-PTSC, respectively.

Fig. S13. Reflectance spectra of an ITO glass substrate with and without a textured PDMS foil implemented on the front-side of the ITO glass substrate.

Table S2. Photovoltaic parameters derived from current-density–voltage (J-V) scans measured at a fixed rate of 0.6 V/s from the open-circuit voltage (V_{OC}) to the short-circuit current (J_{SC}) (backward scan) and from J_{SC} to V_{OC} (forward scan) for a champion semi-transparent top PSC and a filtered LBG bottom PSC while an anti-reflection PDMS foil was applied in front side of the device. The stabilized PCEs (SPCEs) of the top and filtered bottom PSCs and the corresponding calculated 4T all-perovskite tandem solar cell (all-PTSC) are given in bold.

Perovskite solar cell (PSC)	Scan	V _{oc}	J _{SC}	FF	PCE	SPCE
	Direction	(∨)	(mA/cm²)	(%)	(%)	(%)
Semi-transparent top PSC	Backward	1.16	20.7	78.6	18.9	18.3
(with PDMS)	Forward	1.13	21.0	74.4	17.7	
Filtered LBG bottom PSC	Backward	0.77	11.7	72.0	6.5	6.4
(with PDMS)	Forward	0.76	11.7	67.5	6.0	
4T all-PTSC	Backward				25.4	24.7
(with PDMS)	Forward				23.7	