Supporting Information

Atomic Level Design of Single Iron Atom Embedded Mesoporous Hollow

Carbon Spheres as Multi-effect Nanoreactors for Advanced Lithium-

Sulfur Batteries

Qinjun Shao, Lei Xu, Decai Guo, Yan Su* and Jian Chen*

- ^a Advanced Rechargeable Battery Laboratory, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- ^b University of Chinese Academy of Sciences, Beijing 100049, China
- ^c Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), Dalian University of Technology, Dalian, 116024, China.
- * Corresponding author. Email address: chenjian@dicp.ac.cn;

Email address: su.yan@dlut.edu.cn.

Figure S1. (a) TEM image of the SiO₂@C spheres; (b) SEM and (c) TEM images of MHCS.(d) TEM image of N/MHCS.

Figure S2. (a) XRD patterns and (b) N_2 adsorption-desorption isotherms of MHCS, N/MHCS and Fe-N/MHCS.

Figure S3. C 1s XPS spectrum of Fe-N/MHCS.

Figure S4. The strongest adsorption energy configurations of polysulfides on N-C substrate.

Figure S5. CV curves of (a) N/MHCS and (b) MHCS symmetric cells in 0.5 mol $L^{-1} Li_2S_6$ electrolyte at 1 mV s⁻¹.

Figure S6. (a) XRD patterns and (b) N_2 adsorption-desorption isotherms of S@MHCS, S@N/MHCS and S@Fe-N/MHCS.

Figure S7. TGA curves of S@MHCS, S@N/MHCS and S@Fe-N/MHCS in Ar atmosphere.

Figure. S8 (a) STEM image of S@Fe-N/MHCS. (b) EDX elemental mapping of (c) carbon (blue), (d) sulfur (yellow), (e) nitrogen (purple) and (f) iron (red).

Figure. S9 CV curves of (a) S@Fe-N/MHCS (b)S@N/MHCS and (c) S@MHCS cells at 0.1 mV s⁻¹.

Figure. S10 (a) EIS curves and (b) the relationship between Z' and $\omega^{-1/2}$ of the three cells with frequency range between 1 and 0.01 Hz after cycling (symbols, real data; lines, fitting curves).

Figure. S11 The charge-discharge profiles of (a) S@Fe-N/MHCS (b) S@N/MHCS and (c) S@MHCS cells at different rate. (d) the charge-discharge profiles of S@Fe-N/MHCS cell at 1 C rate.

Figure S12. Optical photographs of the visible Li-S electrochemical cells using S@MHCS, S@N/MHCS and S@Fe-N/MHCS as cathodes throughout galvanostatic discharge at 0.1 C for 0, 1, 5 and 9 hours.

Table S1

The fitted Mössbauer parameters and the corresponding assignment to Fe-N/MHCS

Components	δ _{iso} /mm s ⁻¹	ΔE _Q /mm s ⁻¹	LW/mm s ⁻¹	Area/%	Assignment
D1	0.30560	1.04509	0 60406	40 70	Fe ^{II} N ₄ -C, low
			0.00400	45.75	spin
D2	0.59299	2.79304	1.10873	36.13	Fe ^{II} N ₂₊₂ -C,
					medium spin
D3	0.51069	1.40928	0 5 8 2 0 0	20.14	N-Fe ^{II} N ₂₊₂ -C,
			0.58209	20.14	high spin

Elements	before cycling			after cycling			
	S@MHCS	S@N/MH	S@Fe-	COMUC	S@N/MH	S@Fe-	
		CS	N/MHCS	SeiMines	CS	N/MHCS	
R _e / Ohm	1.8	3.1	1.8	7.0	2.8	3.4	
<i>R_{SEI}</i> / Ohm	10.6	4.7	5.9	18.5	15.4	24.8	
R _{ct} / Ohm	95.8	80.2	61.0	93.2	50.4	26.4	
<i>D</i> _{Li} ⁺ /cm ² s ⁻¹	1.5×10 ⁻¹⁰	2.2×10 ⁻¹⁰	3.9×10 ⁻¹⁰	1.3×10 ⁻⁹	1.8×10 ⁻⁹	5.0×10 ⁻⁹	

 Table S2. EIS fitting results of S@MHCS, S@N/MHCS and S@Fe-N/MHCS cells

 before/after cycling

The ion diffusion coefficient can be calculated based on the following equation:

$$D = 0.5(RT/An^{2}F^{2}C\sigma)^{2}$$
(1)

(*D*: diffusion coefficient, $cm^2 \cdot s^{-1}$; R: gas constant, J mol⁻¹ K⁻¹; T: absolute temperature, K; A: surface area of the anode, cm^2 ; n: the charge number of Li⁺; F: Faraday constant, C mol⁻¹; C: the concentration of Li⁺, mol L⁻¹; σ : the Warburg factor.)

The slope of the lines in Fig. 5d corresponding to the values of σ which can be obtained according to the following equation:

$$Z_{\rm re} = R_{\rm e} + R_{\rm SEI} + R_{\rm ct} + \sigma \omega^{-1/2}$$
⁽²⁾

Electrodes	S loading	Rate (C)	Cycles	Capacity	Capacity	Rof	
	(mg cm ⁻²)	Rate (C)		(mAh g ⁻¹)	decay (%)	кет.	
S/Co-N-C	1.0	0.5	300	850	0.10	1	
S@Co-N/G	2.0	1	500	681	0.053	2	
SC-Co	1.2	0.5	300	837	0.086	3	
CoSA-N-C@S	1.2	1	1000	675	0.035	4	
S@Co-SAs@NC	2.0	1	600	737	0.067	5	
Fe-PNC/S	1.3	0.5	300	557	0.2	6	
FeSA-CN/S	1.4	4	500	403	0.06	7	
Li₂S@NC-SAFe	1.5	2	1000	490	0.04	8	
Fe/Co-N@C/S	1.5	2	1000	565	0.029	9	
S-SAV@NG	2	0.5	400	551	0.073	10	
S@SA-Zn-	2	4	400	700	0.02		
MXene		1	400	706	0.03	11	
S@Fe-N/MHCS	1.5	1	1000	074	0.0187	This	
				834		work	

Table S3. Comparison of the cycling performance of previously reported single atom embedded sulfur cathodes in coin cell with similar E/S ratio.

References

- B. Q. Li, L. Kong, C. X. Zhao, Q. Jin, X. Chen, H. J. Peng, J. L. Qin, J. X. Chen, H. Yuan, Q. Zhang and J. Q. Huang, *InfoMat*, 2019, 1, 533-541.
- 2. Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie, A. Hu, W. Yan, X. Kong, X. Wu, H. Ji and L. J. Wan, *J. Am. Chem. Soc.*, 2019, **141**, 3977-3985.
- 3. J. Xie, B. Q. Li, H. J. Peng, Y. W. Song, M. Zhao, X. Chen, Q. Zhang and J. Q.

Huang, Adv. Mater., 2019, 31, e1903813.

- 4. Y. Li, J. Wu, B. Zhang, W. Wang, G. Zhang, Z. W. Seh, N. Zhang, J. Sun, L. Huang, J. Jiang, J. Zhou and Y. Sun, *Energy Storage Mater.*, 2020, **30**, 250-259.
- Y. Li, G. Chen, J. Mou, Y. Liu, S. Xue, T. Tan, W. Zhong, Q. Deng, T. Li, J. Hu, C. Yang, K. Huang and M. Liu, *Energy Storage Mater.*, 2020, 28, 196-204.
- 6. Z. Liu, L. Zhou, Q. Ge, R. Chen, M. Ni, W. Utetiwabo, X. Zhang and W. Yang, *ACS Appl. Mater. Interfaces*, 2018, **10**, 19311-19317.
- C. Wang, H. Song, C. Yu, Z. Ullah, Z. Guan, R. Chu, Y. Zhang, L. Zhao, Q. Li and L. Liu, *J. Mater. Chem. A*, 2020, 8, 3421-3430.
- J. Wang, L. Jia, J. Zhong, Q. Xiao, C. Wang, K. Zang, H. Liu, H. Zheng, J. Luo, J. Yang, H. Fan, W. Duan, Y. Wu, H. Lin and Y. Zhang, *Energy Storage Mater.*, 2019, 18, 246-252.
- 9. H. Ye, J. Sun, S. Zhang, H. Lin, T. Zhang, Q. Yao and J. Y. Lee, *ACS Nano*, 2019, **13**, 14208-14216.
- G. Zhou, S. Zhao, T. Wang, S. Z. Yang, B. Johannessen, H. Chen, C. Liu, Y. Ye, Y. Wu, Y. Peng, C. Liu, S. P. Jiang, Q. Zhang and Y. Cui, *Nano Lett.*, 2020, 20, 1252-1261.
- 11. D. Zhang, S. Wang, R. Hu, J. Gu, Y. Cui, B. Li, W. Chen, C. Liu, J. Shang and S. Yang, *Adv. Funct. Mater.*, 2020, **30**, 2002471.