Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information for

Compressible AgNWs/Ti₃C₂T_x MXene Aerogel-based Highly Sensitive

Piezoresistive Pressure Sensor as Versatile Electronic Skins

Lili Bi, Zhonglin Yang, Liangjun Chen, Zhen Wu, Cui Ye*

College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China

*Corresponding authors. E-mail: <u>ve0702@zjut.edu.cn</u> (C. Y.)

Materials. AgNO₃, NaCl, NaBr, ethylene glycol (EG) were obtained from Sinopharm Chemical Reagent Co. Ltd. Polyvinyl pyrrolidone (PVP, 36 w) were received from Sigma-Aldrich. Fluorocarbon surfactant (TF281) was obtained from Shanghai Futian Chemicals. Hydrochloric acid (HCl, 36.5 %) and calciumfluoride (CaCl₂, AR) were purchased from Chengdu Kelong Chemcial Inc. Lithium fluoride (LiF, AR) and SA (AR) was purchased from Aladdin Inc. Ti₃AlC₂ powder (400 mesh) was purchased from Laizhou Kai Kai Ceramic Materials Co. Ltd. PDMS is Dow Corning 184. deionized (DI) water (18.2 M Ω cm) was produced using an ultrapure water system (GWB-1). Filtration membranes (pore size of 8 µm) were obtained from Tiantai Zhongli Filter Equipment Factory Co. Ltd. All chemicals were analytical reagents and used as received without further purification.

Synthesis of AgNWs. AgNWs were synthesized by the polyol reduction according to our previous work^{S1}. And AgNWs raw product (130 mL) was purified by dynamic agitation cleaning according to our previously published work^{S2}. In this case, filtration membrane of the purification facility is with a pore diameter of 8 μm, and the stirring speed of a six-hole stirring paddle was 900 rpm. DI water containing surfactants was dropped into the chamber of purification facility to maintain a constant volume of AgNWs ink for a certain time, ensuring the final AgNWs ink is concentrated to a specific concentration (5 mg mL⁻¹) for subsequent experiments.

Synthesis of Ti₃**C**₂**T**_x. Ti₃**C**₂**T**_x suspensions were prepared through etching Ti₃AlC₂ powder in 9 mL hydrochloric acid (HCl) aqueous solution containing dissolved LiF salt (Ti₃AlC₂: LiF = 1:1 (wt/wt)). The etching solution was stirred at a constant temperature of 35 °C for 24 h. Following the etching, the Ti₃C₂T_x sediment was washed using deionized (DI) water, followed by centrifugation (3500 rpm, 5 min) until the pH of the supernatant was nearly neutral (pH \approx 6). Then, the deposition was redispersed in DI water and sonicated for 20 min under N₂ flow protection, followed by centrifugation at 7500 rpm for 20 min. The Ti₃C₂T_x nanosheets derived from the supernatant was used in the work.

Calculation procedure. A detailed calculation process of 50 μ L water drop approximately equaling to 1.25 Pa applied pressure is presented below:

The mass of a water drop (50 µL) is calculated as below:

 $m = (50 \times 10^{-3} \times 1)g = 0.05 g$

g presents Gravitational acceleration (10 N/Kg, approximate calculation is made here). Our pressure sensor is a cubic structure with a side length of 2 cm, and the pressure exerted on the pressure sensor by a 50 μ L water drop is calculated below:

$$p(Pa, N/m^2) = \frac{F}{s} = \frac{mg}{s} = \frac{0.05 \times 10 \times 10^{-3}}{2 \times 2 \times 10^{-4}} = 1.25 (Pa)$$

Fig. S1. TEM images of (a) AgNWs and (b) $\text{Ti}_3\text{C}_2\text{T}_x.$

Fig. S2. AFM image of $Ti_3C_2T_x$.

Fig. S3. Schematic illustration of the preparation process of $Ti_3C_2T_x$.

Fig. S4. The Zeta potentials of AgNWs, $Ti_3C_2T_x$, AgNWs/ $Ti_3C_2T_x$ and AgNWs/ $Ti_3C_2T_x$ /SA.

Fig. S5. Stress-strain curves of AgNWs/Ti₃C₂T_x aerogels with different concentration of CaCl₂.

Fig. S6. Linear sensitivity of AgNWs/Ti₃C₂T_x aerogels with different concentration of CaCl₂.

Fig. S7. SEM images of as-prepared AgNWs/Ti $_3C_2T_x$ aerogel fabricated by (a) direct freezing, and (b) directional freezing.

Fig. S8. Top-view SEM images of as-prepared AgNWs/Ti $_3C_2T_x$ aerogel: (a) low-resolution, and (b) high-resolution.

Fig. S9. Side-view SEM images of aerogels with different mass ratios (m/m = AgNWs : $Ti_3C_2T_x$) of (a) 1:0, (b) 2:1, (c) 1:1, (d) 1:2, and (e) 0:1.

Fig. S10. Manual compression and recovery process of as-prepared AgNWs/Ti₃C₂T_x aerogel.

 $\label{eq:Fig.S11.} \textbf{Fig. S11.} The linearity of the proposed piezoresistive pressure sensor.$

Fig. S12. Stress-strain curves of as-prepared AgNWs/Ti $_3C_2T_x$ aerogel (a) under 1000 compression cycles, and (b) in cycles 1, 500, 1000 of (a).

Fig. S13. Long-term durability of the proposed piezoresistive pressure sensor.

Pressure Sensor	Response	Detection	Sensitivity 1	Sensitivity 2	Ref.
	time (ms)	limit (Pa)	(detection range)	(detection range)	
MXene cellulose	189	1.0	114.6 kPa ⁻¹	45.5 kPa ⁻¹	S3
Aerogel			(0-10 Pa)	(0-10 kPa)	
MXene/chitosan	109.6	1.0	21.5 kPa ⁻¹	80.4 kPa ⁻¹	S4
Aerogel			(0-10 Pa)	(0-10 kPa)	
MXene/GO	<200	<10	4.05 kPa ⁻¹	22.56 kPa ⁻¹	S5
Aerogel			(0-1 kPa)	(1.25-3.5 kPa)	
GO Block	N/A	N/A	229.8 kPa ⁻¹	26.86 kPa ⁻¹	S6
			(0-0.01 kPa)	(0.3-1 kPa)	
CuNW/PVA		N1 / A	0.036 kPa ⁻¹	0.003 kPa ⁻¹	S7
Aerogel	N/A	N/A	(0-4 kPa)	(4-10 kPa)	
Aligned pores film	50	2.0	0.6 kPa ⁻¹	0.11 kPa ⁻¹	S8
			(0-1 kPa)	(1-5 kPa)	
PVA/GO film	N/A	2.24	4.52 kPa ⁻¹	28.34 kPa ⁻¹	S9
			(0-4 kPa)	(4-10 k Pa)	
Carbon foam	N/A	3	100.29 kPa ⁻¹	21.22 kPa ⁻¹	\$10
			(0-2 kPa)	(2-10 kPa)	
Ti ₃ C ₂ T _x /BC Aerogel	167	1.0	12.5 kPa ⁻¹	N/A	S11
			(0-10 kPa)		
Graphene foam	N/A	N/A	0.36 kPa ⁻¹	0.046 kPa ⁻¹	S12
			(0-2 kPa)	(2-5 kPa)	
PANI/PDMS foam	60	4.0	0.055 kPa ⁻¹	N/A	S13
			(0-5 kPa)		
PANI/BC/CH	N/A	32	1.41 kPa ⁻¹	0.31kPa ⁻¹	S14
aerogel			(0-1 kPa)	(1-2 kPa)	
GO/CNT Aerogel	N/A	28	1.22 kPa ⁻¹	0.39 kPa ⁻¹	S15
			(0-2 kPa)	(2-7 kPa)	
GO/CNC Aerogel	N/A	0.875	86.41 kPa ⁻¹	N1/A	C1C
			(0-3.5 kPa)	IN/A	210
AgNWs/Ti ₃ C ₂ T _x	60	1.25	358.57 kPa ⁻¹	50.99 kPa ⁻¹	This
aerogel			(0-2 kPa)	(2-7 kPa)	work

 Table S1. Comparison of performance of proposed piezoresistive pressure sensor with reported research.

REFERENCES

- S1 G. Chen, G. Wang, Y. Gu, Z. Wu and C. Ye, CrystEngComm, 2019, 21, 5243-5248.
- S2 G. Chen, L. Bi, Z. Yang, L. Chen, G. Wang and C. Ye, ACS Appl. Mater. Interfaces, 2019, 11, 22648-22654.
- S3 H. Zhuo, Y. Hu, Z. Chen, X. Peng, L. Liu, Q. Luo, J. Yi, C. Liu and L. Zhong, J. Mater. Chem. A, 2019, **7**, 8092-8100.
- S4 Y. Hu, H. Zhuo, Q. Luo, Y. Wu, R. Wen, Z. Chen, L. Liu, L. Zhong, X. Peng and R. Sun, J. Mater. Chem. A, 2019, 7, 10273-10281.
- S5 Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao, J. Rao, S. Luo, J. Wang, X. Jiang, Z. Liu, N. Liu and Y. Gao, ACS Nano, 2018, **12**, 3209-3216.
- S6 L. Lv, P. Zhang, T. Xu and L. Qu, ACS Appl. Mater. Interfaces, 2017, 9, 22885-22892.
- S7 Y. Tang, S. Gong, Y. Chen, L. W. Yap and W. Cheng, ACS Nano, 2014, 8, 5707-5714.
- S8 V. V. Sharma, K. N. Kim, G. H. Han, E. J. Gwak, J. H. Woo, S. B. Kang, K. J. Choi, J. Y. Kim and J. M. Baik, Adv. Mater. Technol., 2020, DOI: 10.1002/admt.201901041.
- S9 W. Liu, N. Liu, Y. Yue, J. Rao, F. Cheng, J. Su, Z. Liu and Y. Gao, Small, 2018, 14, e1704149.
- S10 W. Liu, N. Liu, Y. Yue, J. Rao, C. Luo, H. Zhang, C. Yang, J. Su, Z. Liu and Y. Gao, J. Mater. Chem. C, 2018, 6, 1451-1458.
- S11 Z. Chen, Y. Hu, H. Zhuo, L. Liu, S. Jing, L. Zhong, X. Peng and R.-c. Sun, Chem. Mater., 2019, **31**, 3301-3312.
- S12 J. Liang, Z. Zhao, Y. Tang, X. Hao, X. Wang and J. Qiu, Carbon, 2019, 147, 206-213.
- S13 S. Zheng, X. Wu, Y. Huang, Z. Xu, W. Yang, Z. Liu, S. Huang, B. Xie and M. Yang, Appl. Sci. Manuf., 2019, 121, 510-516.
- S14 J. Huang, D. Li, M. Zhao, H. Ke, A. Mensah, P. Lv, X. Tian and Q. Wei, Chem. Eng. J., 2019, 373, 1357-1366.
- S15 X. Wu, X. Liu, J. Wang, J. Huang and S. Yang, ACS Appl Mater Interfaces, 2018, 10, 39009-39017.
- S16 K. Zhou, C. Chen, M. Lei, Q. Gao, S. Nie, X. Liu and S. Wang, RSC Adv. 2020, 10, 2150-2159.