MOF-aided topotactic transformation into nitrogen-doped porous Mo₂C mesocrystals for upgrading pH-universal hydrogen evolution reaction

Tengteng Gu,^{a,b}Rongjian Sa,^cLinjie Zhang,^bFeng Zhou,^bRuihu Wang^b and Xiaoju Li^{*,a}

^aFujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science,

Fujian Normal University, Fuzhou, Fujian 350007, China

^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure

of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

^cInstitute of Oceanography, Ocean College, Minjiang University, Fuzhou, Fujian 350108,

China

Experimental section

Materials. All chemicals were commercially available and used without further purification. Molybdenum powder, cobalt nitrate hexahydrate, 2-methylimidazole, polyvinyl pyrrolidone (PVP) and nafion solution (5 wt%) were purchased from Sigma Aldrich. Hydrogen peroxide, methanol, sulfuric acid and potassium hydroxide were purchased from Sinopharm Chemical Reagent. Potassium hydrogen phosphate anhydrous and potassium phosphate monobasic were purchased from Aladdin Reagent. Pt/C (20 wt%) was purchased from Alfa Aesar. Ultrapure water (18.25 M Ω cm⁻¹) was produced by a Water Purifier system.

Pretreatment of CFP. CFP was electrochemically activated according to the modified literature method.[S1] Briefly, a CFP slip ($2 \times 3 \text{ cm}^2$) was immersed in 0.5 M aqueous H₂SO₄ solution and used as the working electrode in a conventional three-electrode cell at room temperature. Ag/AgCl and graphite rod were used as the reference and counter electrodes, respectively. After CFP was activated by cyclic voltammetry between 1.5 and 2.0 V versus SCE with a scan rate of 10 mV s⁻¹ for 50 cycles,[S2,S3] the resultant CFP was rinsed in ultrapure water several times to remove the residual acidic electrolyte, and then dried in air to afford the pretreated CFP.

Synthesis of $MoO_3 \cdot H_2O/CFP$. 1.0 g of molybdenum powder was slowly added into 4 mL of H_2O_2 solution under stirring. After it was completely dissolved, 96 mL of ultrapure water was added and the mixture was stirred until the color of the solution turns into dark blue. After the solution was purged with nitrogen for 15 min and was directly used as the electrolyte. The pretreated CFP slip was vertically immersed in the above electrolyte as the working electrode. Saturated Ag/AgCl electrode and graphite rod were used as the reference and counter

electrodes, respectively. $MoO_3 \cdot H_2O/CFP$ -*x* was obtained by electrodeposition at -0.6 V vs sat. Ag/AgCl for appropriate time, where *x* refers to the electrodeposition time.

Synthesis of MoO₃/CFP-*x*. The as-synthesized ZIF-67 nanocrystals (90 mg) were finely ground into powders and were loaded at the bottom of a quartz socket tube, MoO₃/CFP-*x* (1 × 2 cm²) was leaned on the other end of the quartz socket tube, and the quartz bushing was located at the center heating zone of tubular furnace. The samples were heated to 800 °C under 10% H₂/Ar atmosphere with a heating rate of 5 °C min⁻¹ and kept at 800 °C for 2 h. N-Mo₂C/CFP-*x* was attained after naturally cooling to ambient temperature.

Characterizations

Scanning electron microscope (SEM) and transmission electron microscopy (TEM) images were acquired on Hitachi SU8010 and FEI Tecnai F30 instruments, respectively. Powder Xray diffraction (XRD) was recorded on a Mini Flex 600 diffractometer. Nitrogen adsorption/desorption data were recorded at liquid nitrogen temperature (77 K) using a Micromeritics ASAP 2020 M apparatus. The sample was degassed at 120 °C under vacuum for 12 h prior to the measurement. The specific surface area was calculated using the Brunauer-Emmett-Teller (BET) equation, and the total pore volumes were calculated from the amount adsorbed at a relative pressure (P/P₀) of 0.99. The pore size distributions were calculated by the nonlocal density functional theory (NL-DFT) model. The Raman measurements were performed on a Renishaw spectrometer at 532 nm on a Renishaw Microscope System RM2000. X-ray photoelectron spectroscopy (XPS) was conducted on a Thermo Scientific ESCALAB spectrometer. Elemental analysis was operated on a Vario MICRO elemental analyzer. Inductive coupling plasma-optical emission spectroscopy (ICP- OES) was performed on a Jobin Yvon Ultima 2 system. X-ray absorption fine structure (EXAFS) measurements were conducted to investigate the local structures of the Mo composite catalysts at the beamline 14W1 in 1W1B station in Beijing Synchrotron Radiation Facility (BSRF). The incident beam was monochromatized using a Si (111) double crystal monochromator. At room temperature, the spectra were taken for the K-edge of Mo (E0 = $2.0*10^4$ eV) in a transmission mode with separate N₂-filled IC Spec ionization chambers for incident and transmitted beams. The reference spectra of Mo foil were taken simultaneously so that the energy in the spectrum of sample could be calibrated with the respect to the K-edge energy of Mo metal. The obtained data were analyzed with ATHENA and ARTEMIS in the IFEFIT suite of software programs. FEFF9 code was used to synthesize theoretical EXAFS spectra for nonlinear square fitting of samples.

Electrochemical measurements

All samples were tested on a CHI 760E electrochemical workstation with a three-electrode system. The self-supported N-Mo₂C/CFP was directly served as a working electrode, and graphite rod was used as a counter electrode. For reference electrode used in electrolytes with different pH value, a saturated calomel electrode (SCE) was chosen for aqueous 0.5 M H₂SO₄, while a saturated Ag/AgCl electrode was used for both aqueous 1 M KOH and 1 M PBS solutions. Unless otherwise stated, all potentials were reported versus reversible hydrogen electrode (RHE) by converting the potentials measured according to the following equation: E (*vs.* RHE) = E (*vs.* Ref.) + E^o_{ref.} (*vs.* SHE) + 0.059 × pH, and all potentials in this study were *iR*-compensated. To evaluate the electrocatalytic HER activity, cathodic linear sweep voltammetry (LSV) curves were measured at a scan rate of 5 mV s⁻¹ in static Ar-saturated

electrolytes under constant room temperature of 25 °C. Cyclic voltammetry (CV) under non-Faradaic potentials was used to detect electrochemical double-layer capacitance for estimating the effective electrochemical active area. Electrochemical impedance spectroscopy (EIS) spectra were performed with frequency from 10⁻² to 10⁶ Hz with an amplitude of 10 mV. The long-term durability of the catalysts was tested by the chronoamperometry for 24 h, and the continuously repeated 1000 CV cycles as well.

Calculation of ECSA

The electrochemical double-layer capacitances (C_{dl}) of the electrocatalysts are obtained based on the equation: $C_{dl} = I/K$

Where K is the scan rate.

ECSA is calculated by assuming a standard value of 60 µF cm⁻² [S4]:

 $ECSA = C_{dl} / 60$

Turnover Frequency (TOF) Calculation.

Turnover frequency (TOF) values of different samples were calculated according to the equation:

 $TOF = J * N_A / (2 * n *F * ECSA)$

Where J is the current density, N_A is the Avogadr's number, 2 represents the stoichiometric

number of electrons consumed in the electrode HER reaction, n is the number of the active

sites, F is the Faraday constant and ECSA is the electrochemically active surface area of the

electrode.

Computational Details

Density functional theory (DFT) calculations have been applied to investigate hydrogen evolution reaction (HER) process of Mo₂C and N-Mo₂C systems. The initial structure of Mo₂C was taken from bulk Mo₂C with A $2 \times 2 \times 1$ supercell. The optimized cell parameters are a = 6.063 Å, b = 6.071 Å and c = 4.726 Å. [S5] The Mo₂C (002) slab was used to evaluate the HER process. Along the [002] direction, Mo₂C showed two different crystal planes with Mo atoms on the top plane and C atoms on the bottom plane (Mo₂C-MoT and N-Mo₂C-MoT) or with C atoms on the top plane and Mo atoms on the bottom plane (Mo₂C-CT and N-Mo₂C-CT). All calculations were carried out by using DMo_{13} package. [S6] The generalized gradient approximation (GGA) with the functional of Perdew-Burke-Ernzerhof (PBE) was utilized. DFT semi-core pseudopotentials were used for the core treatment with a double numerical polarized (DNP) 3.5 basis set. The Grimme's scheme was adopted to treat the long-range dispersion interactions. A Fermi smearing of 0.005 hartree was utilized in this calculation. The convergence criteria for energy, gradient and displacement convergence were 1.0×10^{-5} Ha, 0.002 Ha/Å, and 0.005 Å, respectively. $5 \times 5 \times 5$ and $3 \times 3 \times 2$ Monkhorst-Pack grid for the Brillouin zone sampling were used for bulk and slab Mo₂C models, respectively. The Mo_2C (002) slab model was six thick layers and a (2 × 2) surface unit cell with 48 Mo atoms and 24 C atoms. All periodic slabs had a vacuum spacing of at least 15 Å, which was thick enough to avoid artificial interaction. All atoms in the bottom layers were fixed to the bulk positions, while the adsorbate and the atoms in the top two layers were allowed to relax. The free energy of HER process was evaluated by following equation: $\Delta G = \Delta E - E_H + \Delta E_{ZPE} - T\Delta S$. ΔE is the difference between the energy of the adsorption state and pure surface, E_{H} is the energy of H in gas phase, E_{ZPE} is the zero-point energy change and ΔS is the entropy change.

Fig. S1. The digital photograph for the quartz socket tube loaded with ZIF-67 and MoO₃/CFP inside two sides.

Fig. S2. SEM images of (a) pristine CFP and (b) CFP after calcination at 800 °C (CFP-800) under 10% H₂/Ar atmosphere. c) XRD patterns for CFP and CFP-800.

Fig. S3. SEM images for (a) MoO_3 ·H₂O/CFP-30 and (b) MoO_3 ·H₂O/CFP-60.

Fig. S4. SEM images for (a-c) MoO₃/CFP-30 and (d-f) MoO₃/CFP-60.

Fig. S5. SEM images for (a-c) N-Mo₂C/CFP-30 and (d-f) N-Mo₂C/CFP-60.

Fig. S6. SEM image for the sample obtained through direct carbonization of M_0O_3 ·H₂O/CFP-45.

Fig. S7. (a) TEM and (b) HRTEM images for MoO₃/CFP-45, the inset in b is the electrondiffraction pattern.

Figure S8. (a) FTIR and (b) XPS survey spectra for MoO_3 ·H₂O/CFP and standard molybdic acid.

Fig. S9. (a) XRD patterns and Raman spectra for N-Mo₂C/CFP-30, N-Mo₂C/CFP-45 and N- M_{2} C/CFP (0)

Mo₂C/CFP-60.

Fig. S10. (a) N₂ adsorption isotherm and (b) corresponding pore size distribution for N-

Mo₂C scratched from N-Mo₂C/CFP-45.

Fig. S11. Electrochemical capacitance measurements for (a) N-Mo₂C/CFP-30, (b) N-Mo₂C/CFP-45, (c) N-Mo₂C/CFP-60, (d) MoO₃/CFP-45 and (e) 20wt% Pt/C in 0.5 M H₂SO₄ using CV at various scan rates. (f) Difference in current density plotted against scan rate showing the extraction of C_{dl} value.

Fig. S12. ECSA-normalized HER polarization curves for N-Mo₂C/CFP-x and MoO₃/CFP-45 in (a) 0.5 M H₂SO₄, (b) 1.0 M PBS and (c) 1.0 M KOH.

Fig. S13. EIS spectra in (a) $0.5 \text{ M H}_2\text{SO}_4$, (b) 1 M PBS and (c) 1 M KOH for N-Mo₂C/CFP-*x*,

MoO₃/CFP-45 and Pt/C.

Fig. S15. Electrochemical capacitance measurements for (a) N-Mo₂C/CFP-30, (b) N-Mo₂C/CFP-45, (c) N-Mo₂C/CFP-60, (d) MoO₃/CFP-45 and (e) 20 wt% Pt/C in 1 M PBS using CV at various scan rates. (f) Difference in current density plotted against scan rate showing the extraction of C_{dl} value.

Fig. S16. Electrochemical capacitance measurements for (a) N-Mo₂C/CFP-30, (b) N-Mo₂C/CFP-45, (c) N-Mo₂C/CFP-60, (d) MoO₃/CFP-45 and (e) 20 wt% Pt/C in 1 M KOH using CV at various scan rates. (f) Difference in current density plotted against scan rate showing the extraction of C_{dl} value.

Fig. S17. (a, b) SEM, (c)TEM and (d) HRTEM images of N-Mo₂C/CFP-45 after HER durability test in 1 M KOH.

Fig. S18. (a) XRD pattern, (b) Mo 3d, (c) C 1s and (d) N 1s XPS spectra of N-Mo₂C/CFP-45 before and after HER durability test in 1 M KOH.

Fig. S19. Side view of the optimized geometries on (002) facet for (a) Mo_2C -CT (b) N- Mo_2C -CT (c) Mo_2C -MoT and (d) N- Mo_2C -MoT.

Fig. S20. (a, b) SEM images and (c) XRD patterns for ZIF-67. (d, e) SEM images and (f) XRD pattern for Co-MOF-74.

Fig. S21. XRD pattern of Mo₂C-MoO₂/CFP obtained using Co-MOF-74 as carbon source.

Fig. S22. (a, b) SEM images of Mo_2C/MoO_2 -CFP obtained using Co-MOF-74 as carbon source.

Fig. S23. (a, b, c) HER polarization curves and (d, e, f) Tafel plots for N-Mo₂C/CFP-45 and Mo₂C/MoO₂/CFP-45 in 0.5 M H₂SO₄, 1 M PBS and 1 M KOH electrolytes.

nitrogen sources and (b) MoO₂/CFP-45 obtained using 2-methylimidazole as carbon and nitrogen sources.

Polarization curves of N-Mo₂C/CFP-45 and Mo₂C electrodes in (d) 0.5 M H₂SO₄, (e) 1 M

PBS and (f) 1 M KOH.

Fig. S27. (a) SEM image and (b) XRD pattern of MoO₂-Mo₂C/CFP obtained at 700 °C. (c)

SEM image and (d) XRD pattern of Mo₂C/CFP obtained at 900 °C.

Fig. S28. HER polarization curves and Tafel plots for N-Mo₂C/CFP-45 obtained at different

calcination temperatures in (a, d) 0.5 M H₂SO₄, (b, e) 1.0 M PBS and (c, f) 1.0 M KOH.

x/min	The mass loading of Mo species (mg cm ⁻²)					
X/ 111111	MoO ₃ ·H ₂ O/CFP-x	MoO ₃ /CFP-x	N-Mo ₂ C/CFP-x			
30	5.35	2.32	2.70			
45	7.78	3.17	3.45			

4.70

4.10

Table S1. The mass loading densities of Mo species in $MoO_3 \cdot H_2O/CFP-x$, $MoO_3/CFP-x$ and $N-Mo_2C/CFP-x$.

 Table S2. Elemental contents of N-Mo₂C/CFP-x.

9.55

60

Samples	Mo/wt% ^[a]	C/wt% ^[b]	N/wt% ^[b]
N-Mo ₂ C/CFP-30	20.74	70.24	5.87
N-Mo ₂ C/CFP-45	23.83	65.72	7.64
N-Mo ₂ C/CFP-60	28.93	63.29	6.78

^[a] Measured by ICP-OES; ^[b] Measured by elemental analysis.

Catalyst	η_{onset}	η_{10}	Tafel slope	Reference	
Catalyst	(mV)	(mV)	(mV dec ⁻¹)		
N-Mo ₂ C/CFP-45	11	45	44	This work	
Co-NRCNTs	140	260	69	[S7]	
FeP Nanoparticles		50	37	[S8]	
Mo _x C-IOL	79	117	60	[89]	
Mo_5N_6 NSs		~249	330	[S10]	
Ni ₂ P@NPCNFs	52	63.2	56.7	[S11]	
MoP ₂ NSs		58	98	[S12]	
MoP NS/CC	50	187	94	[S13]	
Mo ₂ C nanowires	70	200	53	[S14]	
Co-Mo ₂ C	40	140	39	[S15]	
MoCN	50	140	46	[S16]	
FePSe ₃ /NC		70	53	[S17]	
$(CNF)@CoS_2$	40	110	66.8	[S18]	
Cu _{0.075} Co _{0.925} P/CP		47	47.2	[S19]	
Mo ₂ C	14	35	25	[S20]	

Table S3. Comparison of HER performance for N-Mo₂C/CFP-45 with the reported noblemetal-free electrocatalysts in 0.5 M H₂SO₄. η_{10} is denoted as overpotential at -10 mA cm⁻².

TableS4. C_{dl} andECSAofMoO_3/CFP,N-Mo_2C/CFP-30,N-Mo_2C/CFP-45andN- $Mo_2C/CFP-60$ in 0.5M H_2SO_4,1.0M PBSand1.0M KOH.

Catalysts	<mark>0.5 M H₂SO₄</mark>		1 M PBS		<mark>1 M KOH</mark>	
	C _{dl}	ECSA	C _{dl}	ECSA	C _{dl}	ECS
	(mF cm ⁻²)	(cm ²)	(mF cm ⁻²)	(cm ²)	(mF cm ⁻²)	A
						(cm ²)
M0O3/CFP	<mark>65</mark>	<mark>541</mark>	<mark>65</mark>	<mark>541</mark>	<mark>56</mark>	<mark>466</mark>
N-M02C/CFP-30	<mark>149</mark>	<mark>1241</mark>	<mark>110</mark>	<mark>916</mark>	<mark>115</mark>	<mark>958</mark>
N-M02C/CFP-45	<mark>192</mark>	<mark>1600</mark>	<mark>137</mark>	<mark>1141</mark>	<mark>180</mark>	<mark>1500</mark>
N-M02C/CFP-60	<mark>151</mark>	<mark>1258</mark>	<mark>85</mark>	<mark>708</mark>	<mark>111</mark>	<mark>925</mark>

Table S5. Comparison of HER performances for N-Mo₂C/CFP-45 with other nonnoble metal-based electrocatalysts in 1 M PBS. η_{10} is denoted as overpotential at -10 mA cm⁻².

Catalyst	η_{onset}	η_{10}	Tafel slope	Deference	
	(mV)	(mV)	(mV dec ⁻¹)	Reference	
N-Mo ₂ C/CFP-45	23	80	65	This work	
Co - NRCNTs	330	540		[S7]	
FeP nanoparticles		102		[S8]	
Mo_5N_6		~249	330	[S10]	
Ni ₂ P@NPCNFs	148	185.3	230.3	[S11]	
$MoP_2 NSs$		85	98	[S12]	
MoP NS/CC		187	94	[\$13]	
Ni ₃ S ₂ /NF		170		[S21]	
3D MoS ₂ /N-GAs	236	261	230	[822]	
Co ₉ S ₈ @C	150	290	280	[823]	
FePSe ₃ /NC		140.1	167	[S17]	
$(CNF)@CoS_2$	130	360	63.7	[S18]	
Cu _{0.075} Co _{0.925} P/CP		120	97.5	[S19]	

	η_{onset}	η_{10}	Tafel slope	D
Catalyst	(mV)	(mV)	/mV dec ⁻¹	Reference
N-Mo ₂ C/CFP-45	6	36	32	This work
Co - NRCNTs	160	370		[S7]
N,S-CN		380	103	[S24]
Mn-hcp Ni/C	39	105	68	[S25]
Co-Ex-MoS ₂	15	89	53	[S26]
SWCNTs/MoSe ₂ :Mo ₂ C		89		[\$27]
Mo ₅ N ₆		94	130	[S10]
$Mo_1N_1C_2$	13	132	90	[S28]
$MoB/g-C_3N_4$	80	133	46	[S29]
Ni ₂ P@NPCNFs	89	104.2	79.7	[S11]
MoP ₂ NSs		67	70	[S12]
FePSe ₃ /NC		118.5	88	[S17]
$(CNF)@CoS_2$	130	207	113.3	[S18]
Cu _{0.075} Co _{0.925} P/CP		70	55.1	[S19]

Table S6. Comparison of HER performances for $N-Mo_2C/CFP-45$ with other non-noble metal-based electrocatalysts in 1 M KOH.

References

- (S1) X. Zhang, X. Yu, L. Zhang, F. Zhou, Y. Liang, R. Wang, Adv. Funct. Mater. 2018, 28, 1706523.
- (S2) H. Vrubel, X. Hu, Angew. Chem. Int. Ed. 2012, 51, 12703-12706.
- (S3) M. Xiang, D. Li, W. Li, B. Zhong, Y. Sun, Catal. Commun. 2007, 8, 513-518.
- (S4) Y. Huang, Q. Gong, X. Song, K. Feng, K. Nie, F. Zhao, Y. Wang, M. Zeng, J. Zhong, Y.
 Li, ACS Nano, 2016, 10, 11337-11343.
- (S5) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104-154113.
- (S6) B. Delley, J. Chem. Phys. 2000, 113, 7756-7764.
- (S7) X. Zou, X. Huang, A. Goswami, R. Silva, B. R. Sathe, E. Mikmeková, T. Asefa, Angew. Chem. Int. Ed. 2014, 53, 4372-4376.
- (S8) J. F. Callejas, J. M. McEnaney, C. G. Read, J. C. Crompton, A. J. Biacchi, E. J. Popczun,T. R. Gordon, N. S. Lewis, R. E. Schaak, ACS Nano 2014, 8, 11101-11107.
- (S9) F. Li, X. Zhao, J. Mahmood, M. S. Okyay, S. M. Jung, I. Ahmad, S. J. Kim, G. F. Han,
 N. Park, J. B. Baek, ACS Nano 2017, 11, 7527-7533.
- (S10) H. Jin, X. Liu, A. Vasileff, Y. Jiao, Y. Zhao, Y. Zheng, S. Z. Qiao, ACS Nano 2018, **12**, 12761-12769.
- (S11) M. Q. Wang, C. Ye, H. Liu, M. Xu, S. J. Bao, Angew. Chem. Int. Ed. 2018, **57**, 1963-1967.
- (S12) W. Zhu, C. Tang, D. Liu, J. Wang, A. M. Asiri, X. Sun, J. Mater. Chem. A 2016, 4, 7169-7173.
- (S13) Z. Pu, S. Wei, Z. Chen, S. Mu, Appl. Catal., B 2016, 196, 193-198.
- (S14) L. Liao, S. Wang, J. Xiao, X. Bian, Y. Zhang, M. D. Scanlon, X. Hu, Y. Tang, B. Liu,H. H. Girault, Energy Environ. Sci. 2014, 7, 387-392.
- (S15) H. Lin, N. Liu, Z. Shi, Y. Guo, Y. Tang, Q. Gao, Adv. Funct. Mater. 2016, 26, 5590-5598.

- (S16) Y. Zhao, K. Kamiya, K. Hashimoto, S. Nakanishi, J. Am. Chem. Soc. 2015, **137**, 110-113.
- (S17) J. Yu, W.-J. Li, H. Zhang, F. Zhou, R. Li, C.-Y. Xu, L. Zhou, H. Zhong, J. Wang, Nano Energy 2019, **57**, 222-229.
- (S18) H. Gu, Y. Huang, L. Zuo, W. Fan, T. Liu, Inorg. Chem. Front. 2016, 3, 1280-1288.
- (S19) L. Yan, B. Zhang, J. Zhu, S. Zhao, Y. Li, B. Zhang, J. Jiang, X. Ji, H. Zhang, P. K. Shen, J. Mater. Chem. A 2019, 7, 14271-14279.
- (S20) G. Humagain, K. MacDougal, J. MacInnis, J. M. Lowe, R. H. Coridan, S. MacQuarrie, M. Dasog, Adv. Energy Mater. 2018, 8, 1801461-1801466.
- (S21) L. L. Feng, G. Yu, Y. Wu, G. D. Li, H. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, J. Am. Chem. Soc. 2015, 137, 14023-14026.
- (S22) Y. Hou, B. Zhang, Z. Wen, S. Cui, X. Guo, Z. He, J. Chen, J. Mater. Chem. A 2014, 2, 13795-13800.
- (S23) L. L. Feng, G. D. Li, Y. Liu, Y. Wu, H. Chen, Y. Wang, Y. C. Zou, D. Wang, X. Zou, ACS Appl. Mater. Interfaces 2015, 7, 980-988.
- (S24) K. Qu, Y. Zheng, X. Zhang, K. Davey, S. Dai, S. Z. Qiao, ACS Nano 2017, **11**, 7293-7300.
- (S25) Q. Shao, Y. Wang, S. Yang, K. Lu, Y. Zhang, C. Tang, J. Song, Y. Feng, L. Xiong, Y. Peng, Y. Li, H. L. Xin, X. Huang, ACS Nano 2018, 12, 11625-11631.
- (S26) Y. Luo, X. Li, X. Cai, X. Zou, F. Kang, H. M. Cheng, B. Liu, ACS Nano 2018, 12, 4565-4573.
- (S27) L. Najafi, S. Bellani, R. Oropesa-Nunez, M. Prato, B. Martin-Garcia, R. Brescia, F. Bonaccorso, ACS Nano 2019, 13, 3162-3176.
- (S28) W. Chen, J. Pei, C. T. He, J. Wan, H. Ren, Y. Zhu, Y. Wang, J. Dong, S. Tian, W. C. Cheong, S. Lu, L. Zheng, X. Zheng, W. Yan, Z. Zhuang, C. Chen, Q. Peng, D. Wang, Y. Li, Angew. Chem. Int. Ed. 2017, 56, 16086-16090.

(S29) Z. Zhuang, Y. Li, Z. Li, F. Lv, Z. Lang, K. Zhao, L. Zhou, L. Moskaleva, S. Guo, L. Mai, Angew. Chem. Int. Ed. 2018, 57, 496-500.