Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

A Carbon-Silica-Zirconia Ceramic Membrane with CO₂ Flow-Switching Behavior Promising Versatile High-Temperature H₂/CO₂ Separation

Sulaiman Oladipo Lawal, Liang Yu, Hiroki Nagasawa, Toshinori Tsuru, and Masakoto Kanezashi*

Fig. S1. Schematic flow diagram of the gas permeation testing setup (Test pressures: $P_u = 200-500$ kPa, $P_d = 100$ kPa)

Figure S2. DD-MAS-13C-NMR spectra of C-SiO₂-ZrO₂ prepared at 550 and 750 °C under N₂

Figure S3. FT-IR spectra of SiO₂-ZrO₂-acac powder before and after pyrolysis at 550 °C under N₂

Figure S4. N_2/CO_2 mixture temperature programmed desorption in C-SiO_2-ZrO_2 powder prepared at 550 $^{\rm o}C$ under N_2

Upstream pressure [kPa]

Figure S5. Detailed time course of single CO₂ permeance at pressures ranging from 200 to 700 kPa

Figure S6. Initial transient CO₂ permeance at 200 kPa and 300 °C before steady state

Fig. S7 FE-SEM images of the cross-section profile of a C-SiO₂-ZrO₂ membrane.

Figure S8. Temperature dependence of single-gas permeance and permeance ratios at temperatures ranging from 50 to 300 °C for a C-SiO₂-ZrO₂ membrane prepared at 550 °C

Figure S9. Detailed time courses for the permeance of single-gas and a binary-gas mixture at 50 (a) and 300 $^{\circ}$ C (b)

As presented by Kamaruddin and Koros [1], the mass flux of a species, A, that is the result of the bulk motion of a mixture of gases, A and B, can be written as follows:

$$n_{A}^{bulk} = (n_A + n_B)\omega_A \tag{S1}$$

.

Where n_A , n_B and ω_A are the total mass flux of components A and B and the concentration of component A, respectively. Equation S1 for the mass flux of CO₂ caused by the bulk motion of a mixture of CO₂ and H₂ could be written as follows:

$$n_{CO_2}^{bulk} = \left(n_{H_2} + n_{CO_2}\right)\omega_{CO_2} \tag{S2}$$

The fraction of the bulk-flow contribution that a component makes to the total mass flux in a gaseous mixture is defined as the ratio of the bulk mass flux of the component to the total mass flux. For the CO₂ component in a H₂/CO₂ mixture, equation S3 gives the fraction of the H₂-CO₂ bulk flux contributed by the CO_2 flow [1].

$$\prod_{CO_2}^{bulk} = \frac{n_{CO_2}^{bulk}}{n_{CO_2}} = \frac{\left(n_{H_2} + n_{CO_2}\right)\omega_{CO_2}}{n_{CO_2}} = (1+r)\omega_{CO_2}^{avg}$$
(S3)

Where Π^{bulk} is the fraction of the bulk flux contribution, r is the permeance ratio of H₂ to CO₂ and ω^{avg} is the average CO₂ concentration across the membrane thickness. Applying the log mean difference of CO₂ concentration across the membrane thickness, equation S3 becomes

$$\prod_{CO_2}^{bulk} = (1+r) \frac{(\omega_{CO_2}^f - \omega_{CO_2}^r)}{\ln\left(\frac{\omega_{CO_2}^f - \omega_{CO_2}^p}{\omega_{CO_2}^r - \omega_{CO_2}^p}\right)}$$
(S4)

For a single CO_2 flow, while adopting a single H_2 flow as the frame of reference with a linear CO_2 concentration gradient, equation S3 can be written as follows:

$$\prod_{CO_2}^{bulk} = \left(1 + \frac{1}{r}\right) \left(\frac{\omega_{CO_2}^f + \omega_{CO_2}^p}{2}\right)$$
(S5)

Where ω^{f} , ω^{r} and ω^{p} are the concentrations of CO₂ in the feed, retentate and permeate, respectively, and r becomes the ideal selectivity of H₂ over CO₂. Equations S4 and S5 can thus be plotted against the CO₂ feed-side pressure, as shown in Figure S8. Clearly, the bulk phase flow contribution of CO₂ is much higher in the binary mixture than in pure CO₂ flow and increases as the CO₂ feed pressure increases.

Figure S10. Calculated fraction of the CO_2 bulk flux contribution at 300 °C as a function of the CO_2 feed pressure in single and binary systems (at total $P_u = 500$ kPa)

No.	Membrane type	Separation mechanism	H_2 permeance x 10 ⁻⁸	H ₂ /CO ₂ selectivity	Reference
			[mol m ⁻² s ⁻¹ Pa ⁻¹]	[-]	
200-300 °C					
1	Zeolite (SAPO-34)	Size exclusion	7	23	[2]
2	ZIF-7	Size exclusion	4.5	13.6	[3]
3	Zeolite (B-ZSM-5)	Size exclusion	0.6	33	[4]
4	SiC	Size exclusion	0.89	49	[5]
5	Si	Size exclusion	50	6.8	[6]
6	Pd-organosilica	H ₂ flow enhancement	5.8	33.5	[7]
>300 °C					
7	SiO ₂ -TiO ₂	Size exclusion	24.2	13.6	[8]
8	MFI-type Zeolite	Size exclusion	39.6	141	[9]
9	Zeolite (B-ZSM-5)	Size exclusion	10	47	[4]
300 °C, 500 kPa					
	C-SiO ₂ -ZrO ₂	Flow transition H ₂ enhancement	7	20-30	This work

Table S1. Comparison of H_2 permeance- H_2/CO_2 mixture selectivity trade-off of high-temperature H_2/CO_2 separation membranes

Supplementary references

- [1] H. D. Kamaruddin, and W. J. Koros, J. Membr. Sci., 1997, 135, 147
- [2] M. Yu, H. Funke, R. D. Noble and J. L. Falconer, J. Am. Chem. Soc., 2011, 133, 1748
- [3] A. Huang, Y. Chen, Q. Liu, N. Wang, J. Jiang and J. Caro, J. Membr. Sci., 2014, 454, 126
- [4] M. Hong, J. L. Falconer and R. D. Noble, Ind. Eng. Chem. Res., 2005, 44, 4035
- [5] B. Elyassi, M. Sahimi and T. T. Tsotsis, J. Membr. Sci., 2007, 288, 290
- [6] R. M. de Vos and H. Verweij, Science, 1998, 279, 1710
- [7] J. Lei, H. Song, Y. Wei, S. Zhao and H. Qi, Micr. Meso. Mater., 2017, 253, 55
- [8] Y. Gu and S. T. Oyama, J. Membr. Sci., 2009, 345, 267
- [9] Z. Tang, J. Dong and T. M. Nenoff, Langmuir, 2009, 25 (9), 4848