Supplementary Materials for

Anion exchange-induced single-molecule dispersion of cobalt porphyrins in a cationic porous organic polymer for enhanced electrochemical CO₂ reduction via secondary-coordination sphere interactions

Jia-Kang Tang^a, Chen-Yuan Zhu^a, Tian-Wen Jiang^a, Lei Wei^b Hui Wang^a, Ke Yu^c, Chun-Lei Yang^a, Yue-Biao Zhang^b, Chen Chen^c, Zhan-Ting Li^a, Dan-Wei Zhang^{a*} and Li-Ming Zhang^{a*}

Figure S1 TEM images of POP-Py(0) (a), POP-Py(1) (b) and POP-Py(2) (c). The relatively small size of POP-Py(2) is possibly due to the low degree of polymeration caused by the low solubility of Di(4-pyridyl)biphenyl in NMP solution.

Figure S2 CP/MAS ¹³C NMR spectrum of TBM, POP-Py(0), POP-Py(1) and POP-Py(2).

Figure S3 TGA profile of POP-Py(0), POP-Py(1) and POP-Py(2) under N_2 atmosphere.

Figure S4 Nitrogen adsorption/desorption isotherms of POP-Py(0), POP-Py(1) and POP-Py(2) at 77 K.

Figure S5 CO₂ adsorption/desorption isotherms of POP-Py(0), POP-Py(1) and POP-Py(2) at 298 K.

Figure S6 FT-IR spectra of CoTCPP, POP-Py(0)/CoTCPP, POP-Py(1)/CoTCPP and POP-Py(2)/CoTCPP.

Figure S7 UV-vis spectra of (a) POP-Py(n); (b) CoTCPP and POP-Py(0)/CoTCPP.

Figure S8 XPS survey (a), high-resolution N 1s (b) and Co 2p (c) spectra of POP-Py(0)/CoTCPP.

Figure S9 XPS survey (a), high-resolution N 1s (b) and Co 2p (c) spectra of POP-Py(1)/CoTCPP.

Figure S10 XPS survey (a), high-resolution N 1s (b) and Co 2p (c) spectra of POP-Py(2)/CoTCPP.

Table S1 Anion exchange efficiencies quantified by XPS

	POP-Py(0)/CoTCPP	POP-Py(1)/CoTCPP	POP-Py(2)/CoTCPP
Bromide/porphyrin ratio	0.39	0.58	0.40
after exchange			
Exchange efficiency	84%	78%	83%
npr avahanga/npr total			

Figure S11 Nitrogen adsorption/desorption isotherms of (a) POP-Py(0) and POP-Py(0)/CoTCPP; (b) POP-Py(1) and POP-Py(1)/CoTCPP; (c)POP-Py(2) and POP-Py(2)/CoTCPP at 77 K.

Figure S12 TEM images of POP-Py(1) (a) and POP-Py(2) (b).

Figure S13 STEM image (a) of POP-Py(1)/CoTCPP and the EDX elemental mapping of C (b), O (c), N (d) and Co (e).

Figure S14 STEM image (a) of POP-Py(2)/CoTCPP and the EDX elemental mapping of C (b), O (c), N (d) and Co (e).

Initial CoTCPP/carbon weight	Mass percentage of Co	Mass percentage of	Co Catalyst loading drop-
ratio before mixing	in the hybrid (%)	CoTCPP in the hybrid	casted in the paper
		(%)	(mol/cm ²)
CoTCPP/POP-Py(0) =1/1	0.279	4.2	1.42*10 ⁻⁸
CoTCPP/POP-Py(1) =1/1	0.101	1.53	5.14*10 ⁻⁹
CoTCPP/POP-Py(2) =1/1	0.154	2.33	7.84*10 ⁻⁹
CNT/CoTCPP=10/1	0.615	9.30	3.30*10 ⁻⁸

 Table S2 Contents of CoTCPP in the hybrid catalysts determined by ICP-AES

Figure S15 Linear sweep voltammetry of POP-Py(0)/CoTCPP(a), POP-Py(1)/CoTCPP (b) and POP-Py(2)/CoTCPP (c) in a 0.5 M KHCO₃ aqueous solution saturated with N_2 or CO₂.

Figure S16 Representative chronoamperograms of CO_2 electroreduction catalyzed by POP-Py(0)/CoTCPP (a), POP-Py(1)/CoTCPP (b) and POP-Py(2)/CoTCPP (c) at various potentials in a 0.5 M KHCO₃ aqueous solution.

Catalyst	Electrolyte	Applied potential	Ι	F.E. of	TOF _{co}	Stability	Ref
		(V vs. RHE)	(mA/cm ²)	CO (%)	(s ⁻¹)	(hours)	
POP-Py(0)/CoTCPP	0.5 M KHCO3	-0.6	~1.1	83	1.4	7	This work
Al ₂ (OH) ₂ TCPP-Co	0.5 M KHCO ₃	-0.7	~1	76	0.06	7	S1
CoTPP-cov	0.5 M KHCO ₃	-0.63	1.5	67	8.3	4	S2
CoTPP-noncov	0.5 M KHCO ₃	-0.63	1	52	4.4	4	S2
CoTPP/CNT	0.5 M KHCO ₃	-0.70	~3	~70	2.75	4	S3
CoP@NrGO	0.5 M NaHCO ₃	-0.70	~2.3	80	N.A.	0.5	S4
CoPP@CNT	0.5 M NaHCO ₃	-0.60	25.1	>90	1.37	12	S5
COF-367-Co	0.5 M KHCO ₃	-0.67	3.3	91	0.53	24	S6
COF-366-F-Co	0.5 M KHCO3	-0.67	N.A.	87	N.A.	N.A.	S7
САТруг	0.5 M KHCO ₃	-0.59	0.24	93	0.04	3	S8

 Table S3 Faradaic efficiencies and Operating durability comparison with different metal porphyrin(MPP) catalysts

Figure S17 (a) *In-situ* ATR-SEIRAS spectra recorded with time after stepping CNT/CoTCPP to -0.6 V vs. RHE in a CO₂-saturated 0.5 M KHCO₃ aqueous solution. Reference spectrum was taken at an open circuit potential. (b) Integral intensities of peak A in the *in-situ* ATR-SEIRAS spectra of CNT/CoTCPP and POP-Py(0)/CoTCPP recorded with time at -0.6 V vs. RHE in a CO₂-saturated 0.5 M KHCO₃ aqueous solution.

Figure S18 (a) Linear sweep voltammetry of POP-Py(0)/CoTCPP, CNT/CoTCPP and CoTCPP. (b) Faradaic efficiencies for CO and H_2 production on CNT/CoTCPP and POP-Py(0)/CoTCPP across the potential range from -0.4 to -0.9 V *vs.* RHE.

Wavenumber (cm ⁻¹)				
POP- Py(0)/CoTCPP	POP- Py(1)/CoTCPP	POP- Py(2)/CoTCPP	CNT/CoTCPP	Assignment
1357	1354	1357	1361	v(C-O) stretching of *COOH
1643	1654	1653	1635	v(C=O) stretching of *COOH
1912-1842	1922-1859	1910-1879	1908	v(C-O) stretching of *CO(ad)

Table S4 Band assignments in Figure 5 and Figure S17a

Figure S19 Cell configuration of *in-situ* SEIRAS measurements.

Reference

S1. N. Kornienko, Y. Zhao, C. S. Kley, C. Zhu, D. Kim, S. Lin, C. J. Chang, O. M. Yaghi and P. Yang, J. Am. Chem. Soc., 2015, 137, 14129-14135.

S2. A. N. Marianov and Y. Jiang, Appl. Catal., B, 2019, 244, 881-888.

S3 X.-M. Hu, M. H. Rønne, S. U. Pedersen, T. Skrydstrup and K. Daasbjerg, *Angew.Chem.Int. Ed.*, 2017, **56**, 6468-6472.

S4 M. Zhu, C. Cao, J. Chen, Y. Sun, R. Ye, J. Xu, and Y.-F. Han, ACS Appl. Energy Mater., 2019,

2,2435-2440

S5 M. Zhu, J. Chen, L. Huang, R. Ye, J. Xu and Yi-Fan Han, *Angew.Chem.Int. Ed.*, 2019, **58**, 6595-6599.

S6 S. Lin, C.S. Diercks, Y.-B. Zhang, N. Kornienko, E.M. Nichols, Y. Zhao, A.R. Paris, D. Kim, P.

Yang, O.M. Yaghi and C. J. Chang, Science, 2015, 349, 1208–1213.

S7 C. S. Diercks, S. Lin, N. Kornienko, E. A. Kapustin, E. M. Nichols, C. Zhu, Y. Zhao, C. J. Chang and O. M. Yaghi, *J. Am. Chem. Soc.*, 2018, **140**, 1116-1122.

S8 A. Maurin and M. Robert, J. Am. Chem. Soc., 2016, 138, 2492-2495