Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Improvement of the Water Oxidation Performance of Ti, F Comodified Hematite by Surface Modification with Co(salen) Molecular Cocatalyst

Ruiling Wang,^a Yasutaka Kuwahara,^{a,b,c} Kohsuke Mori,^{a,b} Catherine Louis,^d Yuyu Bu,^e and Hiromi Yamashita^{*a,b}

^a Division of Material and Manufacturing Science, Graduate School of Engineering, Osaka University,

2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

^b Elements Strategy Initiative for Catalysts & Batteries Kyoto University, ESICB, Kyoto University, Katsura, Kyoto 615-8520, Japan

^c JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

^d Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), F-75005 Paris, France

^e Key Laboratory of Wide Bang-gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China

Corresponding Author

* Hiromi Yamashita (yamashita@mat.eng.osaka-u.ac.jp)

Fig. S1 (a) FE-SEM image of F-Ti-Fe₂O₃/Co(salen); (b) cross-section FE-SEM image of F-Ti-Fe₂O₃/Co(salen).

Fig. S2 TEM images of (a) Fe₂O₃, (b) Ti-Fe₂O₃, (c) F-Ti-Fe₂O₃ and (d) F-Ti-Fe₂O₃/Co(salen).

Fig. S3 XRD patterns of Fe₂O₃, Ti-Fe₂O₃, F-Ti-Fe₂O₃ and F-Ti-Fe₂O₃/Co(salen).

Fig. S4 UV-Vis spectra of Fe₂O₃, Ti-Fe₂O₃, F-Ti-Fe₂O₃ and F-Ti-Fe₂O₃/Co(salen).

Fig. S5 N 1s XPS spectra of Fe_2O_3 , Ti-Fe_2O_3, F-Ti-Fe_2O_3 and F-Ti-Fe_2O_3/Co(salen).

Fig. S6 TEM images of (a) F-Ti-Fe₂O₃/Co(salen)-250 and (b) F-Ti-Fe₂O₃/Co(salen)-300.

Fig. S7 LSV curves of F-Ti-Fe₂O₃ and F-Ti-Fe₂O₃/Co(salen) at different temperatures photoanodes under illumination.

Fig. S8 IPCE curves of Fe₂O₃, Ti-Fe₂O₃, F-Ti-Fe₂O₃ and F-Ti-Fe₂O₃/Co(salen) photoanodes at 1.23 V vs. RHE under illumination.

Fig. S9 Amperometric I-t curves of Fe₂O₃, Ti-Fe₂O₃, F-Ti-Fe₂O₃ and F-Ti-Fe₂O₃/Co(salen) photoanodes.

Fig. S10 H_2 and O_2 evolution of the F-Ti-Fe₂O₃/Co(salen) photoanode at 1.23 V vs. RHE under illumination.

Fig. S11 LSV curves of photoanodes in 1 M NaOH and 1 M NaOH with 0.5 M H_2O_2 solution under illumination: (a) Fe_2O_3 , (b) $Ti-Fe_2O_3$, (c) $F-Ti-Fe_2O_3$ and (d) $F-Ti-Fe_2O_3/Co(salen)$ photoanodes.

Fig. S12 Polarization curves for OER performance of Fe_2O_3 , $Ti-Fe_2O_3$, $F-Ti-Fe_2O_3$ and $F-Ti-Fe_2O_3/Co(salen)$ photoanodes in the dark.

Fig. S13 EIS spectra of Fe₂O₃, Ti-Fe₂O₃, F-Ti-Fe₂O₃ and F-Ti-Fe₂O₃/Co(salen) photoanodes in the dark.

Fig. S14 Standard IMPS spectra in Nyquist coordinates.

Photoanodes	Electrolyte	J (mA/cm ²) at 1.23 V vs. RHE	Onset potential (V vs. RHE)	Ref.
Co-Pi/Ag/Fe ₂ O ₃	1 M NaOH	4.32	0.70	1
α-Fe ₂ O ₃ /FeOOH/Au	1 M KOH	3.2	0.60	2
Fe ₂ O ₃ -TiP75-Co-Pi	1 M NaOH	2.9	0.85	3
ITO/Fe ₂ O ₃ /Fe ₂ TiO ₅ /Fe ₂ O ₃	1 M NaOH	2.2	1.0	4
Rh-F-TiFeO ₅ /Fe ₂ O ₅	1 M NaOH	2.12	0.72	5
C-Co-Ti- Fe ₂ O ₃	1 M NaOH	2.24	0.70	6
NiOOH/Fe ₂ O ₃ /F-Fe ₂ O ₃	1 M KOH	2.48	0.61	7
Oxygen vacancies+Ti-Fe ₂ O ₃	1 M NaOH	2.25	1.0	8
g-C ₃ N ₄ /Ti-Fe ₂ O ₃	1 M NaOH	2.55	0.95	9
Co-Pi-B-Ti-Fe ₂ O ₃	1 M NaOH	2.61	0.90	10
FeOOH/M:B-Fe ₂ O ₃	1 M NaOH	2.35	0.835	11
Fe ₂ O ₃ :Ti/NH ₂ -MIL-101(Fe)	1 M NaOH	2.27	1.0	12
Co-MOF/Fe ₂ O ₃	1 M NaOH	2.0	0.64	13
F-Ti-Fe ₂ O ₃ /Co(salen)	1 M NaOH	3.02	0.81	This work

Table S1 Comparison of our photoanode to other hematite-based photoanodes

Table S2 Fitted parameters of the EIS spectra of Fe₂O₃, Ti-Fe₂O₃, F-Ti-Fe₂O₃ and F-Ti-Fe₂O₃/Co(salen) photoanodes under illumination.

Sample	$R_{sol} \left(\Omega \cdot cm^{-2} \right)$	$R_{ss} \left(\Omega \cdot cm^{-2} \right)$	$R_t \left(\Omega \cdot cm^{-2} \right)$
Fe ₂ O ₃	18.7	580	215
Ti-Fe ₂ O ₃	17.3	108	33.6
F-Ti-Fe ₂ O ₃	17.6	65.4	32.0
F-Ti-Fe ₂ O ₃ /Co(salen)	17.3	55.4	28.0

Table S3 Transfer time, lifetime and charge collection efficiency of photo-induced electrons obtained from CIMP/VS of Fe₂O₃, Ti-Fe₂O₃, F-Ti-Fe₂O₃ and F-Ti-Fe₂O₃/Co(salen) photoanodes

Sample	τ_{d} (ms)	τ_{n} (ms)	Charge collection
			efficiency (%)
Fe ₂ O ₃	0.587	4.74	87.6
Ti-Fe ₂ O ₃	0.558	5.42	89.7
F-Ti-Fe ₂ O ₃	0.467	6.15	92.4
F-Ti-Fe ₂ O ₃ /Co(salen)	0.372	6.16	94.0

Sample	k_{tr} (s ⁻¹)	$k_{re} (s^{-1})$	η_{ct} (%)
Fe ₂ O ₃	0.26	0.60	30.0
Ti-Fe ₂ O ₃	3.59	0.92	79.6
F-Ti-Fe ₂ O ₃	4.09	0.65	86.3
F-Ti-Fe ₂ O ₃ /Co(salen)	6.02	0.75	88.9

Table S4 Transfer rate, recombination rate and transfer efficiency of photoinduced carriers obtained from CIMPS of Fe₂O₃, Ti-Fe₂O₃, F-Ti-Fe₂O₃ and F-Ti-Fe₂O₃/Co(salen) photoanodes

Supplementary References

- 1 P. Peerakiatkhajohn, J.H. Yun, H. Chen, M. Lyu, T. Butburee and L. Wang, Adv. Mater., 2016, 28, 6405.
- 2 L. Wang, H. Hu, N. T. Nguyen, Y. Zhang, P. Schmuki and Y. Bi, Nano Energy, 2017, 35, 171.
- 3 X. Lv, K. Nie, H. Lan, X. Li, Y. Li, X. Sun, J. Zhong and S. T. Lee, Nano Energy, 2017, 32, 526.
- 4 P. Tang, H. Xie, C. Ros, L. Han, M. Biset-Peiró, Y. He, W. Kramer, A. P. Rodríguez, E. Saucedo, J. R. Galán-Mascarós, T. Andreu, J. R. Morante, J. Arbiol, *Energy Environ. Sci.*, 2017, 10, 2124.
- 5 J. Deng, X. Lv, K. Nie, X. Lv, X. Sun and J. Zhong, ACS Catal., 2017, 7, 4062.
- 6 H. Lan, Y. Xia, K. Feng, A. Wei, Z. Kang and J. Zhong, Appl. Catal. B Environ., 2019, 258, 117962.
- 7 F. Li, J. Li, L. Gao, Y. Hu, X. Long, S. Wei, C. Wang, J. Jin and J. Ma, J. Mater. Chem. A., 2018, 6, 23478.
- 8 A. Pu, J. Deng, M. Li, J. Gao, H. Zhang, Y. Hao, J. Zhong and X. Sun, J. Mater. Chem. A., 2014, 2, 2491.
- 9 Y. Liu, F.Y. Su, Y.X. Yu and W. De Zhang, Int. J. Hydrogen Energy., 2016, 41, 7270.
- 10 H. Lan, A. Wei, H. Zheng, X. Sun and J. Zhong, Nanoscale, 2018, 10, 7033.
- 11 H. Ahn, K. Yoon, M. Kwak, J. Park and J. Jang, ACS Catal., 2018, 8, 11932.
- 12 Y. J. Dong, J. F. Liao, Z. C. Kong, Y. F. Xu, Z. J. Chen, H. Y. Chen, D. Bin Kuang, D. Fenske and C. Y. Su, *Appl. Catal. B Environ.*, 2018, 237, 9.
- 13 Q. Zhang, H. Wang, Y. Dong, J. Yan, X. Ke, Q. Wu and S. Xue, Solar Energy, 2018, 171, 388.