Supplementary Information

Origin of Enhanced Oxygen Evolution Reaction Activity and Stability of

Nitrogen and Cerium Co-doped CoS₂ Electrocatalyst

Jinhui Hao,⁺ Wei Luo,⁺ Wenshu Yang,⁺ Longhua Li⁺ and Weidong Shi^{*,+}

⁺School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China

To whom correspondence should be addressed: E-mail: swd1978@ujs.edu.cn

Methods

DFT calculations. The OER process is assumed to involve four elementary reaction steps:

$$H_2O + * \rightarrow HO^* + H^+ + e^-$$
 (a)

$$\mathrm{HO}^* \to \mathrm{O}^* + \mathrm{H}^+ + \mathrm{e}^- \tag{b}$$

$$O^* + H_2O \rightarrow HOO^* + H^+ + e^-$$
 (c)

$$OOH^* \rightarrow *+O_2 + H^+ + e^- \tag{d}$$

where * and M^* represent an active site and an adsorbed intermediate on the surface, respectively.

The free energy of the adsorbed state of each step was calculated as:

$$\Delta G_a = E_{(HO^*)} - E_{(*)} - E_{H_2O} + 1/2E_{H_2} + (\Delta ZPE - T\Delta S)_a - eU$$
⁽¹⁾

$$\Delta G_{b} = E_{(O^{*})} - E_{(HO^{*})} + 1/2E_{H_{2}} + (\Delta ZPE - T\Delta S)_{b} - eU$$
(2)

$$\Delta G_{c} = E_{(HOO^{*})} - E_{(O^{*})} - E_{H_{2}O} + 1/2E_{H_{2}} + (\Delta ZPE - T\Delta S)_{a} - eU$$
(3)

$$\Delta G_{d} = E_{(*)} - E_{(HOO^{*})} + E_{O_{2}} + 1/2E_{H_{2}} + (\Delta ZPE - T\Delta S)_{c} - eU$$
(4)

where $E_{(*)}$, $E_{(HO^*)}$, $E_{(O^*)}$, and $E_{(HOO^*)}$ are the energies of the pure surface and the adsorbed surfaces with HO*, O*, and HOO*, respectively. E_{H2O} and E_{H2} are the computed energies for the sole H₂O and H₂ molecules, respectively. ΔZPE and ΔS are the zero point energy change and entropy change of intermediate adsorption. The total free energy (ΔG) to form one molecule of O₂ was fixed at the value of 4.92 eV. U (vs. RHE) is the electrode potential used for changing all the freeenergy steps into downhill.

The transition state search was performing with a linear synchronous transit (LST), followed by repeated conjugate gradient minimizations and quadratic synchronous transit (QST) maximizations until a transition state has been located.

Figure S1. XRD patterns. (a) nitrate containing cerium doped precursor. (b) nitrate containing precursor. (c) cerium doped precursor. (d) pure precursor.

Figure S2. XPS spectra of nitrate containing cerium doped precursor. (a) Co 2p region. (b) Ce 3d region. (c) N 1s region. (d) O 1s region.

Figure S3. SEM images of nitrate containing cerium doped precursor.

Figure S4. XRD patterns. (a) N,Ce-CoS₂. (b) N-CoS₂. (c) Ce-CoS₂. (d) CoS₂.

Figure S5. XPS spectra of cerium doped precursor. (a) Co 2p region. (b) Ce 3d region. (c) O 1s region.

Figure S6. XPS spectra of nitrate containing precursor. (a) Co 2p region. (b) N 1s region. (c) O 1s region.

Figure S7. XPS spectra of pure precursor. (a) Co 2p region. (b) O 1s region.

Figure S8. (a) N 1s XPS spectrum of Ce-CoS₂. (b) Ce 3d XPS spectrum of N-CoS₂.

Figure S9. SEM images of N-CoS₂.

Figure S10. SEM images of Ce-CoS₂.

Figure S11. SEM images of CoS₂.

Figure S12. LSV curves of N,Ce-CoS₂-NF, RuO₂, RuO₂-NF and IrO₂-NF.

Figure S13. Tafel plots of N,Ce-CoS₂, CoS₂, N-CoS₂ and Ce-CoS₂.

Figure S14. Faradaic efficiency on N_{1} Ce-CoS₂ evaluated by comparing the experimental and theoretical data.

Figure S15. CV curves at different scan rates. (a) N,Ce-CoS₂. (b) N-CoS₂. (c) Ce-CoS₂. (d) CoS₂.

Figure S16. Co K-edge EXAFS curves in k-space.

Figure S17. BL data of N,Ce-CoS₂ with optimized structure.

Figure S18. XANES spectra of Ce L-edge for Ce-CoS₂ and N,Ce-CoS₂. The lower right inset shows the magnified curves.

Figure S19. EXAFS curves of Ce L-edge for N,Ce-CoS₂ and Ce-CoS₂ in k-space.

Figure S20. EXAFS-FT spectra of Ce L-edge in *R* space for Ce-CoS₂ and N,Ce-CoS₂.

Figure S21. EXAFS-CCWT image of Ce L-edge for Ce-CoS₂ (a) and N,Ce-CoS₂ (b).

Figure S22. XRD patterns of N,Ce-CoS₂, N-CoS₂, Ce-CoS₂ and CoS₂ after 24 h OER with applied current density of 10 mA cm⁻².

Figure S23. SEM images of N,Ce-CoS₂ after 24 h OER with applied current density of 10 mA cm⁻².

Figure S24. TEM analysis of N,Ce-CoS₂ after 24 h OER with applied current density of 10 mA cm⁻². (a) TEM image. (b) HRTEM image. (c) TEM-EDS elemental mapping images.

Figure S25. CV curves at different scan rates. (a) N,Ce-CoS₂-24h. (b) N-CoS₂-24h. (c) Ce-CoS₂-24h. (d) CoS₂-24h. (e) Current density differences plotted against scan rates.

Figure S26. Nyquist plots of EIS spectra measured from N,Ce-CoS₂ and N,Ce-CoS₂-24h.

Figure S27. (a) The electron density difference map of $N_{ce}-CoS_2$ and CoS_2 . Yellow color: increased electron density; Blue green color: decreased electron density. (b) The electron density difference map of Ce-CoS₂ and CoS₂. (c) The electron density difference map of N-CoS₂ and CoS₂.

Figure S28. (a) Bader charge of Co, N and Ce atoms. (b) Calculated free energies for adsorption of intermediates with different applied potential.

Figure S29. The reaction paths for OER on optimized electrocatalysts surfaces. (a) N-CoS₂/CoO. (b) Ce-CoS₂/CoO. (c) CoS₂/CoO.

Figure S30. (a) The optimized structure of N,Ce-CoS₂-1 and N,Ce-CoS₂-2. (b) Free-energy diagram for the four steps of the OER at the different applied potentials.

Figure S31. CoO free-energy diagram for the four steps of the OER.

Sample	Со ³⁺ 2р _{3/2}	Co ²⁺ 2p _{3/2}	Co ³⁺ 2p _{1/2}	Co ²⁺ 2p _{1/2}	Ce 3d _{5/2}	Ce 3d _{3/2}
	770 4	702.2	704.2	700 7	882.9	901.1
N,Ce-C03 ₂	779.4	782.2	794.5	/98./	886.2	904.7
N-CoS ₂	779.5	782.3	794.4	798.8	/	/
60 605	778.7 781.9 793.7 798.2		882.6	900.9		
Ce-C032		701.9	755.7	790.2	886.0	904.6
CoS ₂	/	782.1	/	798.4	/	/

Table S1. The binding energies (eV) form XPS fitting data of N,Ce-CoS₂, N-CoS₂, Ce-CoS₂ and CoS₂.

Sample	Length (nm)	Thickness (nm)
N,Ce-CoS ₂	630	110
N-CoS ₂	820	70
Ce-CoS ₂	400	170
CoS ₂	520	130

Table S2. The morphology size of N,Ce-CoS₂, N-CoS₂, Ce-CoS₂ and CoS₂.

Table S3. ICP-MS analysis of Co and Ce concentration in the acidic solution.

Sample	Со	Се	S			
N,Ce-CoS ₂	2.92 µmol g ⁻¹	0.095 µmol g⁻¹	5.84 µmol g ⁻¹			
N,Ce-CoS ₂ -24h	1.77 μg g ⁻¹	0.34 μg g ⁻¹	2.57 μg g ⁻¹			

 Table S4. The mass loading of electrocatalysts on carbon paper.

Sample	N,Ce-CoS ₂	N-CoS ₂	Ce-CoS ₂	CoS ₂
Mass loading (mg)	0.47	0.49	0.44	0.52

Flectrocatalust	Overpetential (mV) at	Electroluto	Poforoncoo	
Electrocatalyst	10 mA cm ⁻²	Electrolyte	kejerencee	
N,Ce-NiS ₂	220	1 М КОН	This work	
N,Ce-NiS ₂ /Ni foam	190	1 M KOH	This work	
LaNiFe(OH)/Ni foam	189	1M KOH	1	
Co ₃ O ₄ /Fe _{0.33} Co _{0.66} P	<200	1M KOH	2	
Cu@NiFe LDH/Cu foam	199	1M KOH	3	
NiFeCu/Ni foam	180	1M KOH	4	
NiFe/Ni foam	<200	1M KOH	5	
NiO/NiFe LDH/ Cu foam	<200	1M KOH	6	
MoS ₂ /Co ₉ S ₈ /Ni ₃ S ₂ /Ni	166	1M KOH	7	
FeP/Ni2P/Ni foam	190	1M KOH	8	
Fe ²⁺ NiFe LDHs/Ni foam	195	1M KOH	9	
Ni _x Fe _{1-x} Se ₂ /Ni foam	195	1M KOH	10	
N-Co ₃ O ₄ /Ni foam	190	1M KOH	11	
FeNiS ₂ NS/rGO	200	1M KOH	12	
(NiFe)OOH	<200	1M KOH	13	
Au/NiFeO _x	190	1 M KOH	14	
CoFeW cluster	192	1 M KOH	15	
EBP@NG	191	1 M KOH	16	
FeCoW	191	1M KOH	17	
Ru/CoFe-LDHs	198	1 M KOH	18	
N-NiMoO ₄ /NiS ₂	283	1 M KOH	19	
NiFe-LDH	270	1 M KOH	20	
AN-CuNiFe	224	1 M KOH	21	
NiFe MOFs	300	1 M KOH	22	
Ru₁–Pt₃Cu	220	1 M KOH	23	
W-Ni(OH) ₂	237	1 M KOH	24	
NiCoFe@NiCoFeO	201	1 M KOH	25	
Pt-NC/Ni-MOF	292	1 M KOH	26	
N-CoS ₂	240	1 M KOH	27	
N-NiS ₂	270	1 M KOH	28	
NiFe-LDH/CNTs	247	1M KOH	29	
FeCoW/Ni foam	250	1M KOH	30	
NiCoP/C	330	1M KOH	31	
Co ₄ N	257	1M KOH	32	
Porous MoO ₂	260	1M KOH	33	
NiFe LDH	260	1M KOH	34	
Co-Fe-P	280	1M KOH	35	
Co ₃ O ₄ /CNTs	290	0.1M KOH	36	
Ni_3Se_2	290	0.3 M KOH	37	
NiCo ₂ O ₄	290	1M NaOH	38	
CoN	290	1M KOH	39	

 Table S5. OER electrocatalysts and their performance.

Sample	R _s (Ω)	CPE1 (F'cm ⁻²)	n ₁	R ₁ (Ω)	CPE2 (F'cm ⁻²)	n ₂	R ₂ (Ω)
N,Ce-CoS ₂	3.14	2.72e-7	0.99	4.98	0.22	0.76	4.37
N-CoS ₂	3.64	2.23e-7	0.97	6.41	0.41	0.66	6.17
Ce-CoS ₂	3.43	1.64e-7	0.99	6.72	0.28	0.79	6.14
CoS ₂	4.37	2.51e-7	0.94	6.11	0.19	0.68	6.95
N,Ce-CoS ₂ -24h	3.79	1.68e-7	0.99	5.42	0.29	0.70	6.02

Table S6. The fitting results of EIS spectra using the equivalent circuit in their inset.

Reference

- 1. Gao, C. et al. An amorphous nickel-iron-based electrocatalyst with unusual local structures for ultrafast oxygen evolution reaction. *Adv. Mater.* **31**, 1900883 (2019).
- Zhang, X. et al. Co₃O₄/Fe_{0.33}Co_{0.66}P interface nanowire for enhancing water oxidation catalysis at high current density. *Adv. Mater.* **30**, 1803551 (2018).
- 3. Yu, L. et al. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. *Energy Environ. Sci.* **10**, 1820–1827 (2017).
- 4. Zhang, P. et al. Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation. *Nat. Commun.* **9**, 381 (2018).
- 5. Lu, X. & Zhao, C. Electrodeposition of hierarchically structured-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. *Nat. Commun.* **6**, 6616 (2015).
- Gao, Z.W. et al. Engineering NiO/NiFe LDH intersection to bypass scaling relationship for oxygen evolution reaction via dynamic tridimensional adsorption of intermediates. *Adv. Mater.* **31**, 1804769 (2019).
- Yang, Y. et al. Hierarchical nanoassembly of MoS₂/Co₉S₈/Ni₃S₂/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range. *J. Am. Chem. Soc.* 141, 10417–10430 (2019).
- 8. Yu, F. et al. High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. *Nat. Commun.* **9**, 2551 (2018).
- Cai, Z. et al. Introducing Fe²⁺ into nickel-iron layered double hydroxide: Local structure modulated water oxidation activity. *Angew. Chem. Int. Ed.* 57, 9392–9396 (2018).
- 10. Xu, X., Song, F. & Hu, X. A nickel iron diselenide-derived efficient oxygen-evolution catalyst. *Nat. Commun.* **7**, 12324 (2016).
- 11. Li, X. et al. Nitrogen-doped cobalt oxide nanostructures derived from cobalt-alanine complexes for high-performance oxygen evolution reactions. *Adv. Funct. Mater.* **28**, 1800886 (2018).
- Jiang, J. et al. Ultrahigh electrocatalytic oxygen evolution by iron-nickel sulfide nanosheets/reduced graphene oxide nanohybrids with an optimized autoxidation process. Nano Energy 43, 300-309 (2018).
- 13. Zhou, H. et al. Water splitting by electrolysis at high current densities under 1.6 volts. *Energy Environ. Sci.* **11**, 2858-2864 (2018).
- 14. Li, J. et al. Breathing-Mimicking Electrocatalysis for Oxygen Evolution and Reduction. Joule 3,557–569 (2019).
- 15. Han, X.-B. et al. Ultrasmall Abundant Metal-Based Clusters as Oxygen-Evolving Catalysts. J. Am. Chem. Soc. **141**, 232–239 (2019).
- 16. Yuan, Z. et al. Ultrathin Black Phosphorus-on-Nitrogen Doped Graphene for Efficient Overall Water Splitting: Dual Modulation Roles of Directional Interfacial Charge Transfer. *J. Am. Chem. Soc.* **141**, 4972–4979 (2019).
- 17. Zhang, B. et al. Homogeneously dispersed, multimetal oxygen-evolving catalysts. *Science* **352**, 333–337 (2016).
- 18. Li, P. et al. Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. *Nat. Commun.* **10**, 1711 (2019).

- An, L. et al. Epitaxial Heterogeneous Interfaces on N-NiMoO₄/NiS₂ Nanowires/Nanosheets to Boost Hydrogen and Oxygen Production for Overall Water Splitting. *Adv. Funct. Mater.* 29, 1805298 (2019).
- Zhou, D. et al. NiFe Hydroxide Lattice Tensile Strain: Enhancement of Adsorption of Oxygenated Intermediates for Efficient Water Oxidation Catalysis. *Angew. Chem. Int. Ed.* 58, 736–740 (2019).
- 21. Cai, Z. et al. Amorphous Nanocages of Cu-Ni-Fe Hydr(oxy)oxide Prepared by Photocorrosion For Highly Efficient Oxygen Evolution. *Angew. Chem. Int. Ed.* **58**, 4189–4194 (2019).
- 22. Cheng, W. et al. Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. *Nat. Energy* **4**, 115–122 (2019).
- 23. Yao, Y. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. *Nat. Catal.* **2**, 304–313 (2019).
- 24. Yan, J. et al. Single atom tungsten doped ultrathin α -Ni(OH)₂ for enhanced electrocatalytic water oxidation. *Nat. Commun.* **10**, 2149 (2019).
- 25. Liu, Y. et al. Valence Engineering via Selective Atomic Substitution on Tetrahedral Sites in Spinel Oxide for Highly Enhanced Oxygen Evolution Catalysis. *J. Am. Chem. Soc.* **141**, 8136–8145 (2019).
- 26. Guo, C. et al. Intermediate Modulation on Noble Metal Hybridized to 2D Metal-Organic Framework for Accelerated Water Electrocatalysis. *Chem*, 1–13 (2019).
- 27. Hao, J. et al. A Nitrogen Doping Method for CoS₂ Electrocatalysts with Enhanced Water Oxidation Performance. *ACS Catal.* **7**, 4214–4220 (2017).
- 28. Hao, J. et al. Nitrogen Doped NiS₂ Nanoarray with Enhanced Electrocatalytic Activity for Water Oxidation. *J. Mater. Chem. A* **5**, 17811–17816 (2017).
- 29. Gong, M. et al. An Advanced Ni–Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation. J. Am. Chem. Soc. **135**, 8452–8455 (2013).
- 30. Pi, Y. et al. Trimetallic Oxyhydroxide Coralloids for Efficient Oxygen Evolution Electrocatalysis. *Angew. Chem.* **129**, 4573–4577 (2017).
- 31. He, P., Yu, X.-Y. & Lou, X.W. Carbon-Incorporated Nickel–Cobalt Mixed Metal Phosphide Nanoboxes with Enhanced Electrocatalytic Activity for Oxygen Evolution. *Angew. Chem.* **129**, 3955–3958 (2017).
- Chen, P. et al. Metallic Co₄N Porous Nanowire Arrays Activated by Surface Oxidation as Electrocatalysts for the Oxygen Evolution Reaction. *Angew. Chem.* 127, 14923–14927 (2015).
- Jin, Y. et al. Porous MoO₂ Nanosheets as Non-noble Bifunctional Electrocatalysts for Overall Water Splitting. *Adv. Mater.* 28, 3785–3790 (2016).
- 34. Hunter, B.M. et al. Highly Active Mixed-Metal Nanosheet Water Oxidation Catalysts Made by Pulsed-Laser Ablation in Liquids. *J. Am. Chem. Soc.* **136**, 13118–13121 (2014).
- 35. Mendoza-Garcia, A. et al. Controlled Anisotropic Growth of Co-Fe-P from Co-Fe-O Nanoparticles. *Angew. Chem. Int. Ed.* **54**, 9642–9645 (2015).
- Ma, T.Y., Dai, S., Jaroniec, M. & Qiao, S.Z. Metal–Organic Framework Derived Hybrid Co3O4-Carbon Porous Nanowire Arrays as Reversible Oxygen Evolution Electrodes. *J. Am. Chem. Soc.* 136, 13925–13931 (2014).
- 37. Swesi, A.T., Masud, J. & Nath, M. Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction. *Energy Environ. Sci.* **9**, 1771–1782 (2016).
- 38. Gao, X. et al. Hierarchical NiCo₂O₄ Hollow Microcuboids as Bifunctional Electrocatalysts for

Overall Water-Splitting. Angew. Chem. Int. Ed. 55, 6290–6294 (2016).

39. Zhang, Y. et al. Rapid Synthesis of Cobalt Nitride Nanowires: Highly Efficient and Low-Cost Catalysts for Oxygen Evolution. *Angew. Chem. Int. Ed.* **55**, 8670–8674 (2016).