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Additional experimental

Chemicals. Pd(acac), (Aladdin, P101065), Mo(CO)s (Energy Chemical, E060813),
n-octanoic acid (Aladdin, 0108279), trioctylphosphine oxide (TOPO, Sigma-Aldrich,
223301), CdCl,-2.5H,0 (Aladdin, C118631) and oleylamine (OAm, Aladdin,
0106967) were used in the synthesis.  All other chemicals were of analytical grade
and purchased from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). All
the chemicals were used as received without further purification. The water used in
all experiments was de-ionized water prepared by passing through an ultra-pure

purification system.

Synthesis of CdS quantum dots. In a typical procedure for the synthesis of CdS
quantum dots,5! 1 mmol of CdCl,-2.5H,0 and 5 mL of oleylamine were kept in a
three-necked round-bottom flask followed by degassing at 80 °C for 15 min under Ar.
The temperature of the reaction flask was allowed to reach 100 °C, and Ar purging
was continued for another 30 min. Thereafter the temperature was increased to 170
°C when the Cd-oleylamine complex was formed. The sulfur-oleylamine solution (1
mmol sulfur in 2.5 mL oleylamine) was then injected to the above solution at 170 °C
and aged for 70 min, whereupon the flask was cooled down to room temperature.
The product was precipitated with 10 mL isopropanol/ethanol (v/v =1 : 1), and the
product were separated by 10,000 rpm centrifugation for 5 min.  The resulting
precipitates were washed with ethanol for three times and dispersed in 10 mL of

chloroform/ethanol mixture (v/v=1:1.5).

Sample characterizations. Transmission electron microscopy (TEM), high-
resolution TEM (HRTEM) and scanning TEM (STEM) images were taken on a JEOL
JEM-2100F field-emission high-resolution transmission electron microscope operated
at 200 kV. Powder X-ray powder diffraction (XRD) patterns were collected on a D8
Advance X-ray diffractometer with Non-monochromated Cu-Ka X-Ray. X-ray
photoelectron spectra (XPS) were collected on an ESCALab 250 X-ray photoelectron
spectrometer, using nonmonochromatized Al-Ka X-ray as the excitation source.

2



UV-vis-NIR diffuse reflectance data were recorded in the spectral region of 200-800
nm with a Shimadzu SolidSpec-3700 spectrophotometer. Photoluminescence (PL)
spectra were recorded on a HITACHIF-7000 spectrofluorometer with the excitation
wavelength of 370 nm. Isotope-labeling experiments were performed using 3CO,,

and the products were analyzed using gas chromatography-mass spectrometry

(7890B/5977A, Agilent).



Fig. S1 TEM images of Pd nanosheets: (a) Pd-48, (b) Pd-60, (c) Pd-80 and (d) Pd-100.
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Fig. S2 (a) TEM image of CdS quantum dots; (b) size distribution histograms and

average size of CdS quantum dots.



Fig. S3 Low-magnified TEM images of CdS-Pd samples: (a) CdS-Pd-48, (b) CdS-Pd-
60, (c) CdS-Pd-80 and (d) CdS-Pd-100.
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Fig. S4 Survey XPS spectra of CdS-Pd samples.



Fig. S5 TEM images of CdS-Pd-48 after the photocatalytic cyclic process.
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Fig. S6 (a) XRD patterns of CdS-Pd-48 before and after the photocatalytic cyclic
process; (b-d) XPS spectra of CdS-Pd-48 before and after cyclic process: (b) Cd3d, (c)
S2p and (d) Pd3d high-resolution spectra.



Fig. S7 TEM images of (a) CdS-Pd-60, (b) CdS-Pd-80 and (c) CdS-Pd-100 after the

photocatalytic reactions.
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Fig. S8 UV-vis absorption spectra of chloroform suspensions containing Pd-48, Pd-60,

Pd-80 and Pd-100; inset is the photograph of chloroform suspensions containing Pd-

48, Pd-60, Pd-80 and Pd-100.


https://www.baidu.com/link?url=2V750g-dUfPe4hsSYSZfjutDk78XIuBSAqC90OLgr-izle0aQ3mv40iLhPDnaXFsMa_SvyzzWNSUTa3oufmcpXSEb-SQTmszJgGQIRZ5iuu&wd=&eqid=fd279a680043b241000000065dd2a77c
https://www.baidu.com/link?url=2V750g-dUfPe4hsSYSZfjutDk78XIuBSAqC90OLgr-izle0aQ3mv40iLhPDnaXFsMa_SvyzzWNSUTa3oufmcpXSEb-SQTmszJgGQIRZ5iuu&wd=&eqid=fd279a680043b241000000065dd2a77c

i
3

Relative energy (Kcal/mol)
S 2 =2 N b @
[$,} o (4, ] o (3] o

1 N 1 2 1 1 1 N 1 L 1 L

o
o
-

1 2 3 4 5 6 7 8 9 10
Fig. S9 Relative energies of 10 possible interaction systems for the adsorption of CO,
on the amorphous Pd (111) surface. The adsorption system with the lowest energy

(No. 7) was set as a fiducial value.
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Table S1 Optimized geometries for CO, and the supercells of high-crystallinity and
amorphous Pd. gc and go stands for the atomic charge on C and O. Peacock blue: Pd;
Dark gray: C; Red: O.
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Table S2 Optimized geometries and potential interaction sites on the (111) surface of
high-crystallinity and amorphous Pd. Peacock blue: Pd; Red: potential interaction

sites; Blue: structural unit.
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Table S3 Optimized geometries of 10 possible interaction systems for the adsorption

of CO, on the amorphous Pd(111) surface. L, £ and g stands for the bond length,

bond angle and atomic charge, respectively. Peacock blue: Pd; Dark gray: C; Red: O.
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Table S3 (Continued) Optimized geometries of 10 possible interaction systems for

the adsorption of CO, on the amorphous Pd (111) surface.
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Table S3 (Continued) Optimized geometries of 10 possible interaction systems for

the adsorption of CO, on the amorphous Pd(111) surface.
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Table S3 (Continued) Optimized geometries of 10 possible interaction systems for

the adsorption of CO, on the amorphous Pd(111) surface.
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Table S4 Comparison of the photocatalytic enhancement of Pd-48 in CO, reduction

over CdS with those of previously reported cocatalysts.

CcO CH,4 CO,
Semiconductor Cocatalyst enhancement  enhancement selectivity Ref
enhancement .
Cds Ag 3.1 — 2.3 43
CdS Reduced graphene — 12.0 — 44
oxide
CdS N-doped graphene 4.0 5.0 — 45
CdS Reduced graphene 8.0 — 4.2 46
oxide/Ag
Cds Pd-48 10.3 5.9 3.0 *

*The photocatalytic enhancement of Pd-48 reported by us.
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