Electronic Supporting Information (ESI)

Fundamental Interplay between phase-transition kinetics and thermodynamics of manganese-based sodium layered oxides during cationic and anionic redox

Hyungjun Kim^{b‡}, Jaewoon Lee^{a‡}, Myungkyu Kim^b, Sojung Koo^a, Maenghyo Cho^{b*}, Duho Kim^{a*}

^aDepartment of Mechanical Engineering, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea ^bDepartment of Mechanical and Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea [†]There authors contributed equally

Journal Name

Figure S1. Energy differences between the antiferromagnetic and ferromagnetic states of the ground states (x = 0.0, 0.25, 0.5, 0.75, and 1.0) for Na₁₊MnO₂.

 $\label{eq:Figure S2.} The ground states configurations of Na_{1:*}MnO_2 (upper) and Na_{1:*}[Mn_{1/2}Ni_{1/2}]O_2 (lower) following the desodiation process.$

Journal Name

Inverse Na content x in Na _{1-x} MnO ₂	Unit cell volume (Å ³)	a parameter (Å)	b parameter (Å)	c parameter (Å)
0.0	358.913	5.973	5.973	11.255
0.125	-	-	-	-
0.25	343.135	6.057	5.707	11.254
0.375	-	-	-	-
0.5	349.178	6.026	5.718	11.460
0.625	-	-	-	-
0.75	333.583	5.720	5.725	11.771
0.875	-	-	-	-
1.0	305.120	5.767	5.767	10.593

Inverse Na content x in Na _{1-x} [Mn _{1/2} Ni _{1/2}]O ₂	Unit cell volume (Å ³)	a parameter (Å)	b parameter (Å)	c parameter (Å)
0.0	340.585	5.971	5.971	11.081
0.125	-	-	-	-
0.25	335.817	5.921	5.914	11.184
0.375	-	-	-	-
0.5	330.737	5.905	5.822	11.318
0.625	-	-	-	-
0.75	333.952	5.736	5.676	11.726
0.875	316.121	5.739	5.739	11.042
1.0	289.194	5.719	5.719	10.185

Table S1. Volume and lattice parameters of the atomic structure for $Na_{1,x}MnO_2$ (upper table) and $Na_{1,x}[Mn_{1/2}Ni_{1/2}]O_2$ (lower table) calculated by first-principles calculations under 550 eV plane wave cutoff energy.

#	Formula	mp-ID	
1	Na ₁₄ Mn ₂ O ₉	mp-27569	
2	Na ₂ O ₂	mp-2340	
3	NaO ₂	mp-1901	
4	Na ₄ MnO ₄	mp-849304	
5	Na ₄ Mn ₂ O ₅	mp-18869	
6	Na ₂ MnO ₃	mp-761229	
7	Na ₂ Mn ₂ O ₃	mp-558376	
8	NaMnO ₂	mp-18957	
9	Na ₂ Mn ₃ O ₇	mp-19080	
10	NaMn ₂ O ₄	mp-542710	
11	NaMn ₈ O ₁₆	mp-1003638	
12	NaMn ₁₆ O ₃₂	mp-1003635	
13	MnO ₂	mp-19395	
14	Mn ₂ O ₃	mp-1172875	
15	Mn ₃ O ₄	mp-18759	

#	Formula	mp-ID
16	Na ₅ NiO ₄	mp-21996
17	NaNiO ₂	mp-19149
18	Na₄(NiO₂)₅	mp-753301
19	Na₄(NiO₂)9	mp-764295
20	Ni ₃ O ₄	mp-656887
21	Mn(Ni ₃ O ₄) ₂	mp-19442
22	MnNiO ₃	mp-19331

Figure S3. Compound, (a) Na₂O–MnO–O₂ and (b) Na₂O–MnO–NiO–O₂, phase diagram. Green dots represent the stable phases, and red and black lines express equilibrium tie lines, while cyan squares display Na_{1-x}MnO₂ (at x = 0.0, 0.25, 0.5, 0.75, 0.875, and 1.0). The stable phases (green dots) are tabulated on the right tables with their Materials Project ID.

(a) Na _{1-x} MnO ₂		(b)	Na _{1-x} [Mn _{1/2} Ni _{1/2}]O ₂		
x	Decomposition products	Decomposition energy (eV/atom)	x	Decomposition products	Decomposition energy (eV/atom)
0.0	NaMnO ₂	0.105	0.0	Na ₂ MnO ₃ , NiO	0.028
0.25	NaMnO ₂ , NaMn ₂ O ₄	0.054	0.25	Na2Mn3O7, Na2MnO3, NaO2, NiO	0.008
0.50	NaMn ₂ O ₄	0.023	0.50	Na2Mn3O7, NaO2, NiO	0.022
0.75	NaMn ₈ O ₁₆ , Na ₂ Mn ₃ O ₇ , Mn ₂ O ₃	0.019	0.75	MnNiO ₃ , NaO ₂	0.067
1.0	MnO ₂	0.015	0.875	MnNiO ₃ , NaO ₂ , O ₂	0.088
			1.0	MnNiO ₃ , O ₂	0.094

Table S2. Decomposition products and corresponding reaction energy for each ground state for (a) $Na_{1.x}MnO_2$ (at x = 0.0, 0.25, 0.5, 0.75, and 1.0) and (b) $Na_{1.x}[Mn_{1/2}Ni_{1/2}]O_2$ (at x = 0.0, 0.25, 0.5, 0.75, 0.875, and 1.0).

Although each stable ground state during desodiation appears to decompose at 0 K equilibrium phase diagram, $Na_{1-x}MnO_2$ and $Na_{1-x}[Mn_{1/2}Ni_{1/2}]O_2$ are able to be synthesized with elaborate experimental methods.⁵¹⁻⁵³ Additionally, considering the comparatively low reaction energy for decomposition (~ 100 meV/atom) of each ground state in $Na_{1-x}MnO_2$ and $Na_{1-x}[Mn_{1/2}Ni_{1/2}]O_2$ and kinetic difficulty for Mn and Ni to rearrange and form decomposition products, $Na_{1-x}MnO_2$ and $Na_{1-x}[Mn_{1/2}Ni_{1/2}]O_2$ are thermodynamically stable.

 $\label{eq:Figure S4. Calculated desodiation potentials of Na[Mn_{1/2}Ni_{1/2}]O_2 \ with the experimentally measured charge profile reproduced from Ref. S4,S5.$

Figure S5. Formation energies of mixing enthalpy considering both Na/ \Box orderings and interlayer stacking changes (P2- or O2-stacking) as a function of the inverse Na content (x) for (a) Na_{1-x}MnO₂ and (b) Na_{1-x}[Mn_{1/2}Ni_{1/2}]O₂ oxides in the anion-redox-related regions (3rd $0.5 \le x \le 0.75$, and 4th $0.75 \le x \le 1.0$). Atomic structure of P2- or O2-stacking for (c) Na_{1-x}MnO₂ and (d) Na_{1-x}[Mn_{1/2}Ni_{1/2}]O₂ axid x = 0.75.

Figure S6. Combined profiles of partial density of states (PDOSs) of Mn 3*d*-electron and O 2*p*-electron at x = 0.0, 0.25, 0.5, 0.75, and 1.0 in Na_{1-x}MnO₂.

Journal Name

Figure S7. Combined-phase mixing enthalpy fitted from the ground/pseudo-ground states from first-priniciple formation energies of mixing enthalpy (a) in NaMnO₂ and (b) in Na[Mn_{1/2}Ni_{1/2}]O₂, from Figure 1a-b using the quadratic double-well function.

Figure S8. Contours of phase separation kinetics of (a-e) NaMnO₂ and (f-j) Na[Mn_{1/2}Ni_{1/2}]O₂ in 1st region at different dimensionless times \hat{t} (\hat{t} = 0.00, 0.20, 0.40, 0.60, and 0.80).

Journal Name

Figure S9. Contours of phase separation kinetics of (a-e) NaMnO₂ and (f-j) Na[Mn_{1/2}Ni_{1/2}]O₂ in the 2nd region at different dimensionless times \hat{t} (\hat{t} = 0.00, 0.20, 0.40, 0.60, and 0.80).

ARTICLE

Figure S10. Contours of phase separation kinetics of (a-e) NaMnO₂ and (f-j) Na[Mn_{1/2}Ni_{1/2}]O₂ in the 3rd region at different dimensionless times $\hat{t}(\hat{t} = 0.00, 0.20, 0.40, 0.60, and 0.80)$.

Journal Name

Figure S11. Contours of phase separation kinetics of (a-e) NaMnO₂ and (f-j) Na[Mn_{1/2}Ni_{1/2}]O₂ in the 4th region at different dimensionless times \hat{t} (\hat{t} = 0.00, 0.20, 0.40, 0.60, and 0.80).

[S1] A.Caballero, L. Hernán, J. Morales, L. Sánchez, J. S. Peña and M. A. G. Aranda, J. Mater. Chem., 2002, 12, 1142.

[S2] Z. Lu and J. R. Dahn, J. Electrochem. Soc., 2001, 148, A1225.

[S3] M. Kalapsazova, R. Stoyanova, E. Zhecheva, G. Tyuliev and D. Nihtianova, J. Mater. Chem. A, 2014, 12, 1142.

[S4] Y. Shao, Y.-T. Zhou, M.-M. Deng, Z.-F. Tang, J.-Y. Liao, H. J. M. Bouwmeester and C.-H. Chen, J. Solid State Electrochem., 2019, 23, 2979.

[S5] D. Kim and J. Lee, Chem. Mater., 2020, **32**, 5541.