Supporting Information for

Pressure-driven significant phonon mode softening and robust superconductivity in layered germanium phosphide

Jingyan Song,^{ab#} Ge Fei,^{a#} Xiaobing Liu,^{*a} Shuai Duan,^a Bingchao Yang,^a Xin Chen,^{a*} David J. Singh,^c Yunxian Liu,^a Liuxiang Yang,^{*b} Jiangang Guo^{de} and Ping Zhang^{af}

^aSchool of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong 273165, China. ^bCenter for High Pressure Science and Technology Advanced Research, Beijing 100094, China. ^cDepartment of Chemistry, University of Missouri, Columbia MO 65211, USA. ^dSchool of Physics, University of Chinese Academy of Sciences, Beijing 100094, China. ^eSongshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China. ^fInstitute of Applied Physics and Computational Mathematics, Beijing, 71037, China.

Fig. S1. Typical TEM and SEAD images for GeP_5 at ambient condition (a) and decompressed from 18.5 GPa (b), 53.5 GPa (c) and 60.3 GPa (d), indicating pressure-induced amorphous structures and deformation (shown in the red dashed area in c).

*Correspondence and requests for materials should be addressed to X.L. (email: <u>xiaobing.phy@qfnu.edu.cn</u>); X.C. (email: <u>chenxin@qfnu.edu.cn</u>); or to L.Y (email: <u>liuxiang.yang@hpstar.ac.cn</u>)

Fig. S2. (a) Electrical resistivity as a function of temperature in the range of 1.8-15 K at pressure from 18.5 GPa to 53.5 GPa. Inset image: temperature dependence of resistivity of GeP₅ under different magnetic fields up to 1 T at 53.5 GPa. (b) Resistance-pressure curves of ranging from 300 to 1.8 K of the starting materials (blue cycles) and the decompressed sample from 53.5 GPa (red cycles). Inset image: enlarged image for the decompressed sample.

Fig. S3. Crystal structures of GeP₅ with space group P¹ (a and b) and P³m1 (c and d). (b) shows the top views of one (left panel) and two Ge-P layers (right panel). Large blue and small pink spheres represent Ge and P atoms, respectively.

Fig. S4. Comparison of XRD patterns of the P¹ and P³m1 structures along with the experimental data at 2 GPa and 34 GPa, respectively.

Fig. S5. Calculated valence electron localization functions (ELF) with isosurface value of 0.8 for the P¹ structure (a) at ambient pressure, and of 0.7 for the P³m1 structure (b) at 16 GPa. The blue and pink spheres represent Ge and P atoms, respectively.

Fig. S6. The calculated band structures and partial electronic density of states (DOS) for lowpressure P^{1} phase of GeP₅ at 0 (a) and 14 GPa (b).

Table S1. Calculated electron–phonon coupling (EPC) parameter λ , the logarithmic average phonon frequency ω_{log} , the density of states at the Fermi level per formula unit, N(E_F), and the superconducting transition temperature T_c for the P¹ and P³m1 structures at selected pressures from 0 to 60 GPa. μ^* of 0.1 was selected for the T_c calculation.

Phase		P (GPa)	λ	ω _{log} (K)	N(E _f)	<i>T</i> _c (K)
LP	р1	0	0.40	223	8.37	0.9
		6	0.45	282	9.89	2.2
		10	0.57	302	10.44	5.8
		14	0.66	299	10.79	9.1
HP	P ³ m1	16	0.73	297	12.80	11.5
		20	0.61	351	12.61	8.6
		30	0.54	388	12.39	6.1
		40	0.52	401	12.39	5.5
		60	0.49	401	12.31	4.4