Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

## Supporting Information

# Heteroporous bifluorenylidene-based covalent organic frameworks displaying exceptional dye adsorption behavior and high energy storage

Ahmed F. M. EL-Mahdy,<sup>a,b</sup> Mohamed Barakat Zakaria,<sup>c,d,e</sup> Hao-Xin Wang,<sup>a</sup> Tao Chen,<sup>f</sup> Yusuke Yamauchi,<sup>c,e,g</sup> and Shiao-Wei Kuo\*<sup>a,h</sup>

- <sup>*a*</sup> Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- <sup>b</sup> Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt.
- <sup>c</sup> JST-ERATO Yamauchi Materials Space-Tectonics Project and International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- <sup>d</sup> Department of Chemistry, Faculty of Science, Tanta University, Tanta, Gharbeya 31527, Egypt.
- <sup>e</sup> School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- <sup>f</sup> Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Zhongguan West Road 1219, 315201 Ningbo, China.
- <sup>g</sup> JST-ERATO Yamauchi Materials Space-Tectonics Project, Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051, Japan.
- <sup>h</sup> Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.

Corresponding authors:

Shiao-Wei Kuo, +886-7-5252000 ext 4079, E-mail: kuosw@faculty.nsysu.edu.tw

## S1. Materials

Chemicals and solvents were obtained from commercial sources and used as received. Pyrene, tetrakis(triphenylphosphine)palladium(0), *n*-bromosuccinimide, and carbazole were purchased from Acros. Phenanthrene-9,10-dione, dibenzoyl peroxide, 4-bromoaniline, 4-formylphenylboronic acid, potassium permanganate, and Lawesson's reagent were obtained from Alfa Aesar. Bis(pinacolato)diboron, [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II), potassium hydroxide, sodium bisulfite, and potassium acetate were purchased from J. T. Baker. Bromine, nitrobenzene, sulfuric acid, and 4-aminophenylboronic acid pinacol ester were obtained from Sigma–Aldrich.

## **S2.** Characterization

<sup>1</sup>H and <sup>13</sup>C NMR spectroscopy. NMR spectra were recorded using an INOVA 500 instrument, with DMSO- $d_6$  and CDCl<sub>3</sub> as solvents and tetramethylsilane (TMS) as the external standard. Chemical shifts are provided in parts per million (ppm).

Fourier transform infrared (FTIR) spectroscopy. FTIR spectra were recorded using a Bruker Tensor 27 FTIR spectrophotometer and the conventional KBr plate method; 32 scans were collected at a resolution of  $4 \text{ cm}^{-1}$ .

**Solid state nuclear magnetic resonance (SSNMR) spectroscopy.** SSNMR spectra were recorded at National Cheng Kung University using a Bruker Avance III HD solid state NMR spectrometer and a Bruker magic-angle-spinning (MAS) probe, running 32,000 scans.

**Thermogravimetric analysis (TGA).** TGA was performed using a TA Q-50 analyzer under a flow of N<sub>2</sub>. The samples were sealed in a Pt cell and heated from 40 to 800 °C at a heating rate of 20 °C min<sup>-1</sup> under N<sub>2</sub> at a flow rate of 50 mL min<sup>-1</sup>.

**Powder X-ray diffraction (PXRD).** PXRD was performed using a Siemens D5000 and monochromated  $Cu/K\alpha$  ( $\lambda = 0.1542 \text{ nm}$ ). The sample was spread in a thin layer on the square recess of an XRD sample holder.

Surface area and porosimetry (ASAP/BET). The BET surface areas and porosimetry measurements of the prepared samples (ca. 20–100 mg) were performed using a Micromeritics ASAP 2020 surface area and porosity analyzer. Nitrogen isotherms were generated through incremental exposure to ultrahigh-purity  $N_2$  (up to ca. 1 atm) in a liquid  $N_2$  (77 K) bath.

**Field-emission scanning electron microscopy (FE-SEM).** FE-SEM was conducted using a JEOL JSM-7610F scanning electron microscope. Samples were subjected to Pt sputtering for 100 s prior to observation.

**Transmission electron microscopy (TEM).** TEM was performed using a JEOL-2100 scanning electron microscope, operated at 200 kV.

**COF structural simulations.** Molecular modeling was performed using Reflex, a software package for crystal determination from XRD patterns. Unit cell dimensions were first determined manually from the observed XRD peak positions using the coordinates.

**UV–Vis–NIR spectroscopy.** UV–Vis–NIR spectra were recorded at 25 °C using a Jasco V-570 spectrometer, with deionized water as the solvent. Raman spectra were recorded at 25 °C using a Jobin–Yvon T6400 micro Raman apparatus, with a He–Cd laser (325 nm line) as an excitation source.

### **S3.** Synthetic Procedures



Scheme S1. Synthesis of 3,3',6,6'-tetrabromo-9,9'-bifluorenylidene (BF-4Br).

**3,6-Dibromophenanthrene-9,10-dione**: According to the reported method,<sup>S1</sup> phenanthrene-9,10dione (5 g, 24 mmol) and dibenzoyl peroxide (0.2 g, 0.83 mmol) were dissolved at room temperature in nitrobenzene (30 mL). Then, bromine (1.4 g, 8.7 mmol) was added dropwise to the reaction mixture and then heated at 110 °C. Further amount of bromine (6.9 g, 43.3 mmol) was added dropwise to the reaction mixture. After two hours heating, the reaction mixture was cooled and diluted with ethanol (30 mL) was added. The resultant solid was isolated by filtration and washed several times with ethanol. The product was then dried at 60 °C to yield 8.3 g (91% yield) 3,6-dibromophenanthrene-9,10-dione an orange powder. 1 H-NMR (500 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  (ppm): 8.19 (d, *J* = 1.8 Hz, 2H), 7.93 (d, *J* = 6 Hz, 2H), 7.59 (dd, *J* = 6, 1.8 Hz, 2H). <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  (ppm): 179.0, 136.2, 133.5, 132.2, 130.0, 127.7.

**3,6-Dibromo-9H-fluoren-9-one**: According to the reported method, <sup>S2</sup> 3,6-dibromophenanthrene-9,10-dione (5 g, 13.6 mmol) was added to a solution of potassium hydroxide (8.15 g, 0.18 mol) dissolved in water (60 mL) and then heated to 130 °C. After two hours, potassium permanganate (11.43 g, 72.3 mmol) was added and the reaction mixture further heated at 130 °C for two hours. The mixture was cooled to room temperature and then neutralized with diluted sulfuric acid to pH = 7. Sodium bisulfite was added slowly until a complete precipitation of light-yellow solid. The resultant solid was filtered and washed several times with water. The product was then dried at 60 °C to yield 3.3 g (72% yield) 3,6-dibromo-9H-fluoren-9-one a light-yellow powder. 1 H-NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.68 (d, *J* = 1.8 Hz, 2H), 7.56 (d, *J* = 12 Hz, 2H), 7.51 (dd, *J* = 12, 1.8 Hz, 2H). <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  (ppm): 193.8, 146.2, 133.4, 132.0, 130.1, 125.8.

**3,3',6,6'-Tetrabromo-9,9'-bifluorenylidene (BF-4Br)**: A mixture of 3,6-dibromo-9H-fluoren-9one (1 g, 2.96 mmol) and Lawesson's reagent (0.6 g, 1.483 mmol) in dry toluene (40 mL) was refluxed at 110 °C for 20 hours. After cooling, a precipitate was formed and isolated by filtration. The precipitate was heated in acetone for 10 minutes and then filtered again. The product was then dried at 60 °C to yield 0.33 g (35% yield) BF-4Br as an orange powder. The product was partially soluble in common organic solvent, so we performed H NMR spectroscopy only. 1 H-NMR (500 MHz, DMSO- $d_6$ )  $\delta$  (ppm): 8.66 (d, J = 1.8 Hz, 4H), 7.93 (d, J = 12 Hz, 4H), 7.77 (dd, J = 6, 1.8 Hz, 4H).



4,4',4",4"'-([9,9'-bifluorenylidene]-3,3',6,6'-tetrayl)tetrabenzaldehyde (BFTB-4CHO)

**Scheme S2.** Synthesis of 4,4',4'',4'''-([9,9'-bifluorenylidene]-3,3',6,6'-tetrayl)tetrabenzaldehyde (BFTB-4CHO).

**4,4',4'',4'''-([9,9'-bifluorenylidene]-3,3',6,6'-tetrayl)tetrabenzaldehyde (BFTB-4CHO)**: A 100 mL round-bottom flask was charged with BF-4Br (1 g, 1.55 mmol), 4-formylphenylboronic acid (1.86 g, 12.4 mmol), tetrakis(triphenylphosphine)palladium(0)) 90 mg, 0.077 mmol), and potassium carbonate (2.15 g, 15.55 mmol). The solids were evacuated under high pressure for 15 minutes. Then, dioxane (50 mL) and water (10 mL) were added and the reaction mixture allowed to heat at 100 °C for 48 hours under N<sub>2</sub>. After the consummation of BF-4Br, the reaction mixture was cooled to room-temperature and then poured into ice-water to produce a white precipitate. The precipitate was filtered and washed several times with water, methanol and dichloromethane. The product was then dried at 60 °C to yield 0.70 g (60% yield) BFTB-4CHO as a red powder. The product was partially soluble in common organic solvent, so we performed H NMR spectroscopy only. 1 H-NMR (500 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  (ppm): 10.10 (s, 4H), 8.65 (s, 4H), 8.43 (d, *J* = 6 Hz, 4H), 8.14 (d, *J* = 6 Hz, 4H), 8.08 (d, *J* = 6 Hz, 4H), 7.78 (d, *J* = 6 Hz, 4H).



**Scheme S3.** Synthesis of 4,4',4",4"'-([9,9'-bifluorenylidene]-3,3',6,6'-tetrayl)tetraaniline (BFTB-4NH<sub>2</sub>).

**4,4',4'',4'''-([9,9'-bifluorenylidene]-3,3',6,6'-tetrayl)tetraaniline** (BFTB-4NH<sub>2</sub>): A 100 mL round-bottom flask was charged with BF-4Br (1 g, 1.55 mmol), 4-aminophenylboronic acid pinacol ester (2.70 g, 12.3 mmol), tetrakis(triphenylphosphine)palladium(0)) 90 mg, 0.077 mmol), and potassium carbonate (2.15 g, 15.55 mmol). The solids were evacuated under high pressure for 15 minutes. Then, dioxane (50 mL) and water (10 mL) were added and the reaction mixture allowed to heat at 100 °C for 48 hours under N<sub>2</sub>. After the consummation of BF-4Br, the reaction mixture was cooled to room-temperature and then poured into ice-water to produce a white precipitate. The

precipitate was filtered and washed several times with water, methanol. The product was then dried at 60 °C to yield 0.80 g (74% yield) BFTB-4NH<sub>2</sub> as a blue powder. 1 H-NMR (500 MHz, DMSO- $d_6$ )  $\delta$  (ppm): 8.32 (s, 4H), 8.29 (d, J = 12 Hz, 4H), 7.66 (d, J = 12 Hz, 8H), 7.53 (d, J = 12 Hz, 4H), 6.71 (d, J = 12 Hz, 8H), 5.40 (s, br., 8H, 4NH<sub>2</sub>). <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ )  $\delta$  (ppm): 148.93, 141.30, 141.05, 137,60, 135.53, 127.27, 126.66, 126.24, 123.55, 116.85, 114.10.



Scheme S4. Synthesis of 4,4',4",4"'-pyrene-1,3,6,8-tetrayl)tetraaniline (PyTA-4NH<sub>2</sub>).

**1,3,6,8-tetrabromopyrene (Pyrene-4Br):** was prepared as described in the literature with minor modifications.<sup>[83]</sup> A 500 mL round-bottom flask was charged with pyrene (5.0 g, 24 mmol) and nitrobenzene (200 mL) and then bromine (5.6 mL, 109 mmol) was added dropwise through a dropping funnel. The reaction mixture was allowed to reflux at 120 °C for 15 hours. After the consummation of bromine, pale yellow crystallites of 1,3,6,8-tetrabromopyrene were separated from the reaction mixture as precipitate. The suspension was filtrate and the pale-yellow product was washed several times with ethanol and dried under pressure for 12 hours to yield the product in 94%. FTIR: 1592, 1466, 1450, 1228, 1052, 988, 871, 812 cm<sup>-1</sup>.

**4,4',4'',4'''-pyrene-1,3,6,8-tetrayl)tetraaniline** (**PyTA-4NH**<sub>2</sub>): A 100 mL round-bottom flask was charged with pyrene-4Br (2.0 g, 3.8 mmol), bis(pinacolato)diboron (5.98 g, 23.56 mmol), [1,1'-Bis(diphenylphosphino)ferrocene]dichloro palladium(II) (241 mg, 0.033 mmol), and potassium acetate (2.33 g, 23.37 mmol). The solids were evacuated under high pressure for 15 minutes. Then, dioxane (40 mL) was added and the reaction mixture allowed to reflux for 48 hours under N<sub>2</sub>. After the consummation of pyrene-4Br, the reaction mixture was cooled to room-temperature and then poured into ice-water to produce a yellow precipitate. The precipitate was filtered and washed several times with water and purified using flash column chromatography with THF/hexane as eluent. The isolate solid was finally recrystallized with methanol to give 1,3,6,8-tetrakis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrene (**TTDBPy**) as yellow crystals (70% yield).

A 100 mL round-bottom flask was charged with TTDBPy (1.0 g, 1.41 mmol), 4-bromoaniline (1.95 g, 11.33 mmol), tetrakis(triphenylphosphine)palladium(0) (80.88 mg, 0.07 mmol), and potassium carbonate (1.95 g, 14.1 mmol). The solids were evacuated under high pressure for 15 minutes. Then, dioxane (40 mL) and water (7 mL) were added and the reaction mixture allowed to heat at 100 °C for 48 hours under N<sub>2</sub>. After the consummation of TTDBPy, the reaction mixture was cooled to room-temperature and then poured into ice-water to produce a yellow-greenish precipitate. The precipitate was filtered and washed several times with water, methanol and dicholormethane. The isolate solid of 4,4',4'',4'''-pyrene-1,3,6,8-tetrayl)tetraaniline (Py-TA-4NH2) was used without further purification (75% yield). <sup>1</sup>H NMR (500 MHz, DMSO)  $\delta$  (ppm): 8.12 (s, 4H), 7.79 (s, 2H), 7.35 (d, *J* = 12 Hz, 8H), 6.78 (d, *J* = 12 Hz, 8H), 5.30 (s, br., 8H, 4NH<sub>2</sub>). <sup>13</sup>C

NMR (125 MHz, DMSO) δ (ppm): 148.21, 137.14, 131.06, 129.04, 127.60, 126.72, 126.13, 124.43, 113.96.



Scheme S5. Synthesis of 3,3'6,6'-Tetrabromo-9,9'-bicarbazole (BC-4Br).

**3,6-Dibromo-9H-carbazole (Cz-2Br).** Cz-2Br was prepared as previously reported with slight modification. <sup>[84]</sup> To a suspension of carbazole (5 g, 30 mmol) in dichloromethane (300 mL), a solution of *N*-Bromosuccinimide (NBS) (10.68 g, 60 mmol) in 50 mL DMF was added slowly. The reaction mixture was stirred at room temperature overnight. The solution was washed with water (3 × 150 mL), then the organic layer was separated, and the solvent was evaporated. The solid was washed with DCM, then collected and dried under vacuum to yield 3,6-dibromocarbazole (7.7 g, yield: 82%) of the product. <sup>1</sup>H NMR (500 MHz, DMSO)  $\delta$  (ppm): 11.58 (NH, 1H), 8.41 (S, 2H), 7.52 (d, *J* = 8.5 Hz, 2 H), 7.42 (d, *J* = 2 Hz, 2H). <sup>13</sup>C NMR (125 MHz, DMSO)  $\delta$  (ppm): 139.42, 129.42, 124.34, 123.47, 112.97, 112.32.

**3,3'6,6'-Tetrabromo-9,9'-bicarbazole (BC-4Br). BC-4Br** was prepared as previously reported with slight modification. <sup>[84]</sup> Potassium permanganate (2.92 g, 90 mmol) was added to a solution of 3,6-dibromocarbazole (2 g, 30 mmol) in 40 mL acetone at 50 °C. Then the solution was hydrolyzed with 100 mL distilled water. The mixture was extracted with dichloromethane and the solvent was evaporated. The residue was washed with methanol to yield 3,3'6,6'-tetrabromo-9,9'-bicarbazole (6.92 g, yield: 71%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 8.27 (d, 4 H), 7.47 (dd, *J* = 8.5 Hz, 4H), 6.75 (d, *J* = 8.5 Hz, 4H).<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 139.31, 131.19, 124.81, 123.30, 115.41, 110.59.



Scheme S6. Synthesis of 4,4',4",4"'-([9,9'-bicarbazole]-3,3',6,6'-tetrayl)tetraaniline (BCTA-4NH<sub>2</sub>).

**4,4',4'',4'''-([9,9'-bicarbazole]-3,3',6,6'-tetrayl)tetraaniline (BCTA-4NH<sub>2</sub>):** Take a pair of two neck flask, add BC-4Br (1 g, 1.54 mmol), 4-aminophenylboronic acid pinacol ester (2.7 g, 12.34 mmol), Pd (PPh<sub>3</sub>)<sub>4</sub> (90 mg, 0.078 mmol ), k<sub>2</sub>CO<sub>3</sub> (2.13 g, 15.41 mmol) in order and vacuum for 15 minutes. Add 50 mL dioxane and 8ml H<sub>2</sub>O, then heat to 100 °C in an oil pot and the mixture was stirred at 100 °C for 48 h. Pour the solution into a beaker filled with ice cubes and H<sub>2</sub>O and stir, then suction filter. The crude product was purified over a chromatographic silica gel column (hexane/AcOEt, 3:1) to give the pure BCTA-4NH<sub>2</sub>. FTIR (powder): <sup>1</sup>H-NMR (DMSO-d6, 25 °C, 500 MHz):  $\delta$ = 8.63 (s, 4H), 7.56 (s, 4H), 7.50 (s, 8H), 6.86 (s, 4H), 6.70 (d, *J* =10 Hz, 8H), 5.18 (s, 8H). <sup>13</sup>C-NMR (DMSO-*d*<sub>6</sub>, 25 °C, 125 MHz):149.14, 139.72, 135.8, 129.3, 128.52. 125.95, 123.63, 119.06, 115.32, 109.85 ppm.



Scheme S7. Synthesis of BFTB-PyTA COF.

In a 25-mL Schlenk storage tube,  $PyTA-4NH_2$  (53 mg, 0.094 mmol) and BFTB-4CHO (70 mg, 0.14 0.094 mmol) was dissolved in n-butanol (3.5 mL) and *o*-dichlorobenzene (3.5 mL) in the presence of acetic acid (6 M, 0.7 mL). The tube was sealed and degassed through three freezepump-thaw cycles. The tube was sealed off by flame and heated at 120 °C for 3 days. After cooling to room temperature, the tube was opened and the precipitate filtered and washed two times with n-butanol, THF, and acetone respectively. The solid was dried under vacuum at 120 °C overnight to afford BFTB-PyTA COF as a red powder, (90% yield).



Scheme S8. Synthesis of BFTB-BFTB COF.

In a 25-mL Schlenk storage tube, BFTB-4NH<sub>2</sub> (65 mg, 0.094 mmol) and BFTB-4CHO (70 mg, 0.14 0.094 mmol) was dissolved in n-butanol (3.5 mL) and *o*-dichlorobenzene (3.5 mL) in the presence of acetic acid (6 M, 0.7 mL). The tube was sealed and degassed through three freeze-pump-thaw cycles. The tube was sealed off by flame and heated at 120 °C for 3 days. After cooling to room temperature, the tube was opened and the precipitate filtered and washed two times with n-butanol, THF, and acetone respectively. The solid was dried under vacuum at 120 °C overnight to afford BFTB-BFTB COF as a red powder, (91% yield).



Scheme S9. Synthesis of BFTB-BCTA COF.

In a 25-mL Schlenk storage tube, BCTB-4NH<sub>2</sub> (38 mg, 0.055 mmol) and BFTB-4CHO (40 mg, 0.055 mmol) was dissolved in n-butanol (2 mL) and o-dichlorobenzene (2 mL) in the presence of acetic acid (6 M, 0.4 mL). The tube was sealed and degassed through three freeze-pump-thaw

cycles. The tube was sealed off by flame and heated at 120 °C for 3 days. After cooling to room temperature, the tube was opened and the precipitate filtered and washed two times with n-butanol, THF, and acetone respectively. The solid was dried under vacuum at 120 °C overnight to afford BFTB-BCTA COF as a red powder. (91% yield).

## **S4. FTIR Spectral Profiles of COFs**



Figure S1. FT-IR spectra of (a) BFTB-4CHO, (b) PyTA-4NH<sub>2</sub>, and (c) BFTB-PyTA COF.



Figure S2. FT-IR spectra of (a) BFTB-4CHO, (b) BFTB -4NH<sub>2</sub>, and (c) BFTB- BFTB COF.



Figure S3. FT-IR spectra of (a) BFTB-4CHO, (b) BCTA-4NH<sub>2</sub>, and (c) BFTB- BCTA COF.

# **S5. Thermal Gravimetric Analysis**



**Figure S4.** Thermogravimetric analysis trace of BFTB-PyTA, BFTB- BFTB, and BFTB- BCTA COFs under nitrogen atmosphere with heating rate of 20°C min<sup>-1</sup>.

**Table S1.** Values of  $T_{d10\%}$  and Char yield of COFs.

|               | <i>T</i> <sub>d10%</sub> (°C) | Char yield (%) |
|---------------|-------------------------------|----------------|
| BFTB-PyTA COF | 433                           | 70             |
| BFTB-BFTB COF | 416                           | 69             |
| BFTB-BCTA COF | 449                           | 71             |

S6. Field Emission Scanning Electron Microscopy (FE-SEM)



**Figure S5.** FE-SEM images of (a,b) BFTB-PyTA, (c,d) BFTB-BFTB, and (e,f) BFTB-BCTA COFs at different magnification scales.

## **S7. Transmission Electron Microscopy (TEM)**



**Figure S6.** TEM images of (a-c) BFTB-PyTA, (d-f) BFTB-BFTB, and (g-i) BFTB-BCTA COFs at different magnification scales.



S8. Experimental and Simulation X-ray Diffraction Patterns for COFs Structures

**Figure S7.** PXRD pattern of the as-synthesized BFTB-PyTA COF (black), compared with the simulated PXRD pattern of the eclipsed AA-stacking model (purple).

 $2\theta$  (degree)

15

20

10

5

30

25



**Figure S8.** PXRD pattern of the as-synthesized BFTB-BFTB COF (black), compared with the simulated PXRD pattern of the eclipsed AA-stacking model (purple).



**Figure S9.** PXRD pattern of the as-synthesized BFTB-BCTA COF (black), compared with the simulated PXRD pattern of the eclipsed AA-stacking model (purple).

# **S9. PXRD data and BET parameters**

| COF       | S <sub>BET</sub><br>(m <sup>2</sup> g <sup>-1</sup> ) | d <sub>110</sub><br>(nm) | Pore size<br>(nm) | Pore volume<br>(cm <sup>3</sup> g <sup>-1</sup> ) | Interlayer<br>Distance (Å) |
|-----------|-------------------------------------------------------|--------------------------|-------------------|---------------------------------------------------|----------------------------|
| BFTB-PyTA | 1133                                                  | 1.94                     | 1.63              | 0.41                                              | 3.71                       |
| BFTB-BFTB | 1040                                                  | 2.19                     | 1.78, 1.11        | 0.69                                              | 3.79                       |
| BFTB-BCTA | 834                                                   | 2.11                     | 1.75, 1.07        | 0.67                                              | 3.87                       |

 Table S2. PXRD and BET parameters of the synthesized COFs.

S10. Structural Modeling and Fractional atomic coordinates for COF Structures



**Figure S10.** Crystalline structure for BFTB-PyTA COF based on (a) AA–eclipsed stacking models (b) AB–staggered stacking models.



**Figure S11.** Crystalline structure for BFTB-BFTB COF based on (a) AA–eclipsed stacking models (b) AB–staggered stacking models.



**Figure S12.** Crystalline structure for BFTB-BCTA COF based on (a) AA–eclipsed stacking models (b) AB–staggered stacking models.

| Sample Na       | Sample Name : BFTB-PyTA COF |              |                           |                |         |         |         |
|-----------------|-----------------------------|--------------|---------------------------|----------------|---------|---------|---------|
| Space Grou      | Space Group : P 1           |              |                           |                |         |         |         |
| a = 24.918,     | b = 31.042,                 | c = 3.528    | $\alpha = \beta = \gamma$ | <i>ν</i> = 90° |         |         |         |
| $R_{wp} = 8.70$ | 0%                          | $R_p = 6.12$ | 2%                        |                |         |         |         |
| Atom            | x/a                         | y/b          | z/c                       | Atom           | x/a     | y/b     | z/c     |
| C1              | 0.49862                     | 0.91631      | 0.51787                   | C30            | 0.00055 | 0.43426 | 0.51787 |
| C2              | 0.54956                     | 0.91631      | 0.51787                   | C31            | 0.04873 | 0.43426 | 0.51787 |
| C3              | 0.56557                     | 0.96263      | 0.51787                   | C32            | 0.07461 | 0.47652 | 0.51787 |
| C4              | 0.52409                     | 0.99586      | 0.51787                   | C33            | 0.12499 | 0.47643 | 0.51787 |
| C5              | 0.48262                     | 0.96263      | 0.51787                   | C34            | 0.14831 | 0.52016 | 0.51787 |
| C6              | 0.43377                     | 0.97109      | 0.51786                   | C35            | 0.12499 | 0.56389 | 0.51787 |
| C7              | 0.40199                     | 0.93269      | 0.51787                   | C36            | 0.15571 | 0.60742 | 0.51787 |
| C8              | 0.41886                     | 0.88556      | 0.51787                   | C37            | 0.15571 | 0.4329  | 0.51787 |
| C9              | 0.46812                     | 0.87752      | 0.51787                   | C38            | 0.20541 | 0.60226 | 0.51787 |
| C10             | 0.58007                     | 0.87752      | 0.51787                   | C39            | 0.2353  | 0.64165 | 0.51787 |
| C11             | 0.62933                     | 0.88556      | 0.51787                   | C40            | 0.21624 | 0.68759 | 0.51787 |
| C12             | 0.64619                     | 0.93269      | 0.51787                   | C41            | 0.16694 | 0.69334 | 0.51787 |
| C13             | 0.61442                     | 0.97109      | 0.51787                   | C42            | 0.13708 | 0.65368 | 0.51787 |
| C14             | 0.38558                     | 0.84489      | 0.51787                   | C43            | 0.13708 | 0.38665 | 0.51787 |
| C15             | 0.66261                     | 0.84489      | 0.51787                   | C44            | 0.16694 | 0.34698 | 0.51787 |
| C16             | 0.33618                     | 0.85195      | 0.51787                   | C45            | 0.21624 | 0.35273 | 0.51786 |
| C17             | 0.30514                     | 0.81317      | 0.51787                   | C46            | 0.2353  | 0.39867 | 0.51786 |
| C18             | 0.32325                     | 0.76686      | 0.51787                   | C47            | 0.20541 | 0.43807 | 0.51787 |
| C19             | 0.37229                     | 0.75967      | 0.51787                   | C48            | 0.54956 | 0.12401 | 0.51787 |
| C20             | 0.4032                      | 0.79832      | 0.51787                   | C49            | 0.49862 | 0.12401 | 0.51787 |
| C21             | 0.64498                     | 0.79832      | 0.51787                   | C50            | 0.48262 | 0.07769 | 0.51787 |
| C22             | 0.67589                     | 0.75967      | 0.51787                   | C51            | 0.52409 | 0.04446 | 0.51787 |
| C23             | 0.72493                     | 0.76686      | 0.51787                   | C52            | 0.56557 | 0.07769 | 0.51787 |
| C24             | 0.74304                     | 0.81317      | 0.51787                   | C53            | 0.61442 | 0.06923 | 0.51787 |
| C25             | 0.71201                     | 0.85195      | 0.51787                   | C54            | 0.64619 | 0.10763 | 0.51787 |
| C26             | 0.04941                     | 0.52016      | 0.51787                   | C55            | 0.62933 | 0.15476 | 0.51787 |
| C27             | 0.07461                     | 0.56381      | 0.51787                   | C56            | 0.58007 | 0.16281 | 0.51787 |
| C28             | 0.04873                     | 0.60606      | 0.51787                   | C57            | 0.46812 | 0.16281 | 0.51787 |
| C29             | 0.00055                     | 0.60606      | 0.51787                   | C58            | 0.41886 | 0.15476 | 0.51787 |

**Table S3.** Fractional atomic coordinates for the unit cell of BFTB-PyTA COF with AA-stacking.

## Continuous (Table S3)

| Atom | x/a     | v/b     | z/c     | Atom | x/a     | v/b     | z/c     |
|------|---------|---------|---------|------|---------|---------|---------|
| C59  | 0.41886 | 0.15476 | 0.51787 | C94  | 0.29221 | 0.3151  | 0.51787 |
| C60  | 0.40199 | 0.10763 | 0.51787 | N95  | 0.24629 | 0.72861 | 0.51787 |
| C61  | 0.43377 | 0.06923 | 0.51787 | N96  | 0.24629 | 0.31171 | 0.51786 |
| C62  | 0.66261 | 0.19544 | 0.51787 | N97  | 0.33618 | 0.18838 | 0.51787 |
| C63  | 0.38558 | 0.19544 | 0.51787 | N98  | 0.8019  | 0.31171 | 0.51787 |
| C64  | 0.71201 | 0.18838 | 0.51787 | H99  | 0.41981 | 1.00904 | 0.51786 |
| C65  | 0.74304 | 0.22715 | 0.51787 | H100 | 0.36206 | 0.93941 | 0.51787 |
| C66  | 0.72493 | 0.27346 | 0.51786 | H101 | 0.48244 | 0.83969 | 0.51787 |
| C67  | 0.67589 | 0.28065 | 0.51787 | H102 | 0.56499 | 0.83999 | 0.51786 |
| C68  | 0.64498 | 0.24201 | 0.51787 | H103 | 0.68603 | 0.93995 | 0.51787 |
| C69  | 0.4032  | 0.24201 | 0.51787 | H104 | 0.62855 | 1.00898 | 0.51787 |
| C70  | 0.37229 | 0.28065 | 0.51787 | H105 | 0.3211  | 0.88948 | 0.51787 |
| C71  | 0.32325 | 0.27346 | 0.51787 | H106 | 0.26511 | 0.81923 | 0.51787 |
| C72  | 0.30514 | 0.22715 | 0.51787 | H107 | 0.38723 | 0.72208 | 0.51787 |
| C73  | 0.8019  | 0.72861 | 0.51787 | H108 | 0.44324 | 0.79226 | 0.51787 |
| C74  | 0.84278 | 0.43807 | 0.51787 | H109 | 0.60502 | 0.79178 | 0.51787 |
| C75  | 0.81288 | 0.39867 | 0.51787 | H110 | 0.66112 | 0.72202 | 0.51787 |
| C76  | 0.83195 | 0.35273 | 0.51787 | H111 | 0.78307 | 0.81926 | 0.51787 |
| C77  | 0.88124 | 0.34698 | 0.51787 | H112 | 0.72677 | 0.8896  | 0.51786 |
| C78  | 0.9111  | 0.65368 | 0.51787 | H113 | 0.06809 | 0.64158 | 0.51787 |
| C79  | 0.88124 | 0.69334 | 0.51787 | H114 | 0.02079 | 0.64108 | 0.51786 |
| C80  | 0.83195 | 0.68759 | 0.51787 | H115 | 0.02079 | 0.39925 | 0.51786 |
| C81  | 0.81288 | 0.64165 | 0.51787 | H116 | 0.06898 | 0.39925 | 0.51787 |
| C82  | 0.84278 | 0.60226 | 0.51787 | H117 | 0.18878 | 0.52154 | 0.51787 |
| C83  | 0.89247 | 0.4329  | 0.51787 | H118 | 0.22192 | 0.56533 | 0.51787 |
| C84  | 0.89247 | 0.60742 | 0.51787 | H119 | 0.27548 | 0.63661 | 0.51787 |
| C85  | 0.9232  | 0.56389 | 0.51787 | H120 | 0.15091 | 0.73047 | 0.51787 |
| C86  | 0.89987 | 0.52016 | 0.51787 | H121 | 0.09688 | 0.65855 | 0.51787 |
| C87  | 0.9232  | 0.47643 | 0.51787 | H122 | 0.09699 | 0.38095 | 0.51787 |
| C88  | 0.97357 | 0.47652 | 0.51787 | H123 | 0.15108 | 0.30978 | 0.51787 |
| C89  | 0.97357 | 0.56381 | 0.51787 | H124 | 0.27545 | 0.40395 | 0.51786 |
| C90  | 0.99877 | 0.52016 | 0.51787 | H125 | 0.22113 | 0.47533 | 0.51787 |
| C91  | 0.75598 | 0.72522 | 0.51787 | H126 | 0.62837 | 0.03128 | 0.51787 |
| C92  | 0.75598 | 0.3151  | 0.51786 | H127 | 0.68612 | 0.10091 | 0.51787 |
| C93  | 0.29221 | 0.72522 | 0.51786 | H128 | 0.56575 | 0.20063 | 0.51787 |

# Continuous (Table S3)

| Atom | x/a     | y/b     | z/c     | Atom | x/a | y/b | z/c |
|------|---------|---------|---------|------|-----|-----|-----|
| H129 | 0.4832  | 0.20033 | 0.51787 |      |     |     |     |
| H130 | 0.36216 | 0.10037 | 0.51787 |      |     |     |     |
| H131 | 0.41963 | 0.03134 | 0.51787 |      |     |     |     |
| H132 | 0.72708 | 0.15085 | 0.51787 |      |     |     |     |
| H133 | 0.78308 | 0.22109 | 0.51787 |      |     |     |     |
| H134 | 0.66096 | 0.31824 | 0.51786 |      |     |     |     |
| H135 | 0.60494 | 0.24806 | 0.51787 |      |     |     |     |
| H136 | 0.44317 | 0.24854 | 0.51787 |      |     |     |     |
| H137 | 0.38706 | 0.3183  | 0.51787 |      |     |     |     |
| H138 | 0.26511 | 0.22106 | 0.51787 |      |     |     |     |
| H139 | 0.32142 | 0.15072 | 0.51787 |      |     |     |     |
| H140 | 0.82627 | 0.47499 | 0.51786 |      |     |     |     |
| H141 | 0.7727  | 0.40371 | 0.51787 |      |     |     |     |
| H142 | 0.89728 | 0.30985 | 0.51787 |      |     |     |     |
| H143 | 0.9513  | 0.38177 | 0.51787 |      |     |     |     |
| H144 | 0.9512  | 0.65937 | 0.51787 |      |     |     |     |
| H145 | 0.89711 | 0.73055 | 0.51787 |      |     |     |     |
| H146 | 0.77273 | 0.63638 | 0.51787 |      |     |     |     |
| H147 | 0.82705 | 0.56499 | 0.51787 |      |     |     |     |
| H148 | 0.8594  | 0.51878 | 0.51787 |      |     |     |     |
| H149 | 0.73993 | 0.68809 | 0.51787 |      |     |     |     |
| H150 | 0.73993 | 0.35223 | 0.51786 |      |     |     |     |
| H151 | 0.30825 | 0.68809 | 0.51786 |      |     |     |     |
| H152 | 0.30825 | 0.35223 | 0.51787 |      |     |     |     |

| Sample Na         | me: BFTB-E                                                                 | BFTB COF       |         |      |         |         |         |
|-------------------|----------------------------------------------------------------------------|----------------|---------|------|---------|---------|---------|
| Space Grou        | ир: Р 1                                                                    |                |         |      |         |         |         |
| a = 24.664,       | $a = 24.664, b = 31.454, c = 3.291$ $\alpha = \beta = \gamma = 90^{\circ}$ |                |         |      |         |         |         |
| $R_{wp} = 7.69\%$ | 6                                                                          | $R_p = 6.09\%$ |         |      |         |         |         |
| Atom              | x/a                                                                        | y/b            | z/c     | Atom | x/a     | y/b     | z/c     |
| C1                | 0.4817                                                                     | 0.90038        | 0.59817 | C29  | 0.47147 | 0.0823  | 0.68205 |
| C2                | 0.52902                                                                    | 0.90244        | 0.66519 | C30  | 0.45678 | 0.0405  | 0.67104 |
| C3                | 0.5431                                                                     | 0.94435        | 0.66394 | C31  | 0.4983  | 0.01393 | 0.59733 |
| C4                | 0.50209                                                                    | 0.97115        | 0.59388 | C32  | 0.53384 | 0.04489 | 0.54378 |
| C5                | 0.46634                                                                    | 0.94021        | 0.53419 | C33  | 0.57416 | 0.0399  | 0.37364 |
| C6                | 0.42644                                                                    | 0.94528        | 0.35501 | C34  | 0.60311 | 0.07478 | 0.34562 |
| C7                | 0.39785                                                                    | 0.91003        | 0.31267 | C35  | 0.59    | 0.11532 | 0.4672  |
| C8                | 0.41125                                                                    | 0.86927        | 0.42816 | C36  | 0.54634 | 0.12013 | 0.59326 |
| C9                | 0.45483                                                                    | 0.86467        | 0.56168 | C37  | 0.44271 | 0.11639 | 0.71584 |
| C10               | 0.55809                                                                    | 0.86849        | 0.68861 | C38  | 0.39697 | 0.10963 | 0.759   |
| C11               | 0.60368                                                                    | 0.8759         | 0.73402 | C39  | 0.38166 | 0.06744 | 0.77294 |
| C12               | 0.61863                                                                    | 0.91799        | 0.7625  | C40  | 0.4102  | 0.03248 | 0.72941 |
| C13               | 0.58935                                                                    | 0.95271        | 0.72622 | C41  | 0.62004 | 0.15291 | 0.44627 |
| C14               | 0.38094                                                                    | 0.8318         | 0.4047  | C42  | 0.3661  | 0.14676 | 0.78278 |
| C15               | 0.63494                                                                    | 0.83936        | 0.73191 | C43  | 0.66553 | 0.14966 | 0.52706 |
| C16               | 0.33516                                                                    | 0.83564        | 0.4701  | C44  | 0.6927  | 0.1856  | 0.53578 |
| C17               | 0.30754                                                                    | 0.79991        | 0.48049 | C45  | 0.67544 | 0.22575 | 0.45726 |
| C18               | 0.32494                                                                    | 0.75931        | 0.42123 | C46  | 0.63041 | 0.22862 | 0.36596 |
| C19               | 0.37034                                                                    | 0.7556         | 0.34924 | C47  | 0.60332 | 0.1928  | 0.35639 |
| C20               | 0.39787                                                                    | 0.79108        | 0.33938 | C48  | 0.38195 | 0.1863  | 0.90272 |
| C21               | 0.62226                                                                    | 0.8            | 0.87668 | C49  | 0.356   | 0.22251 | 0.8774  |
| C22               | 0.64868                                                                    | 0.76424        | 0.83148 | C50  | 0.31234 | 0.22028 | 0.74733 |
| C23               | 0.68911                                                                    | 0.76667        | 0.64837 | C51  | 0.29553 | 0.18077 | 0.6416  |
| C24               | 0.70279                                                                    | 0.80599        | 0.51773 | C52  | 0.32203 | 0.1445  | 0.65903 |
| C25               | 0.67602                                                                    | 0.84198        | 0.55855 | C53  | 0.09487 | 0.47022 | 0.53114 |
| C26               | 0.29663                                                                    | 0.72061        | 0.43247 | C54  | 0.09535 | 0.51622 | 0.54856 |
| C27               | 0.28672                                                                    | 0.25983        | 0.70592 | C55  | 0.05169 | 0.53017 | 0.56254 |
| C28               | 0.51877                                                                    | 0.08467        | 0.61697 | C56  | 0.02007 | 0.49353 | 0.53304 |

**Table S4.** Fractional atomic coordinates for the unit cell of BFTB-BFTB COF with AA-stacking.

## Continuous (Table S4)

| Atom | x/a     | y/b     | z/c     | Atom | x/a     | y/b     | z/c     |
|------|---------|---------|---------|------|---------|---------|---------|
| C57  | 0.05105 | 0.45665 | 0.50906 | C92  | 0.94897 | 0.42134 | 0.781   |
| C58  | 0.0427  | 0.41423 | 0.43332 | C93  | 0.84416 | 0.62384 | 0.34288 |
| C59  | 0.07735 | 0.38532 | 0.43718 | C94  | 0.83702 | 0.36731 | 0.64548 |
| C60  | 0.12107 | 0.39769 | 0.51268 | C95  | 0.85964 | 0.66485 | 0.41395 |
| C61  | 0.13027 | 0.44131 | 0.54194 | C96  | 0.83043 | 0.6986  | 0.45389 |
| C62  | 0.13148 | 0.54441 | 0.54479 | C97  | 0.78474 | 0.69256 | 0.4351  |
| C63  | 0.1233  | 0.58844 | 0.57463 | C98  | 0.76869 | 0.65174 | 0.36462 |
| C64  | 0.07921 | 0.60142 | 0.64191 | C99  | 0.7981  | 0.61772 | 0.32136 |
| C65  | 0.044   | 0.57292 | 0.63536 | C100 | 0.7911  | 0.37503 | 0.66356 |
| C66  | 0.15528 | 0.36404 | 0.57232 | C101 | 0.76033 | 0.34178 | 0.63108 |
| C67  | 0.15895 | 0.6216  | 0.53401 | C102 | 0.77458 | 0.29991 | 0.5796  |
| C68  | 0.14215 | 0.32523 | 0.72625 | C103 | 0.82019 | 0.29216 | 0.55792 |
| C69  | 0.17179 | 0.29166 | 0.75606 | C104 | 0.85082 | 0.32513 | 0.5864  |
| C70  | 0.2158  | 0.29606 | 0.64943 | N105 | 0.24358 | 0.2595  | 0.67553 |
| C71  | 0.22984 | 0.33484 | 0.50526 | N106 | 0.25381 | 0.72275 | 0.46603 |
| C72  | 0.19987 | 0.36865 | 0.46723 | N107 | 0.75627 | 0.7287  | 0.48423 |
| C73  | 0.20338 | 0.61449 | 0.63145 | N108 | 0.74464 | 0.26432 | 0.55764 |
| C74  | 0.23518 | 0.6471  | 0.60771 | H109 | 0.4186  | 0.97611 | 0.24586 |
| C75  | 0.22321 | 0.68765 | 0.48204 | H110 | 0.36664 | 0.91451 | 0.176   |
| C76  | 0.17915 | 0.69453 | 0.38633 | H111 | 0.46718 | 0.83423 | 0.64201 |
| C77  | 0.14801 | 0.66204 | 0.40271 | H112 | 0.5454  | 0.83686 | 0.6564  |
| C78  | 0.7028  | 0.26509 | 0.47495 | H113 | 0.65341 | 0.92421 | 0.81655 |
| C79  | 0.71546 | 0.72774 | 0.59811 | H114 | 0.60658 | 0.98385 | 0.76751 |
| C80  | 0.90018 | 0.51647 | 0.44513 | H115 | 0.32077 | 0.86613 | 0.52521 |
| C81  | 0.89881 | 0.47235 | 0.5497  | H116 | 0.27272 | 0.80366 | 0.53844 |
| C82  | 0.94202 | 0.45967 | 0.61191 | H117 | 0.38443 | 0.72485 | 0.30064 |
| C83  | 0.97435 | 0.49377 | 0.52231 | H118 | 0.43256 | 0.78667 | 0.27898 |
| C84  | 0.94403 | 0.52825 | 0.40775 | H119 | 0.59196 | 0.79719 | 1.0311  |
| C85  | 0.95376 | 0.5663  | 0.2458  | H120 | 0.63774 | 0.73464 | 0.94528 |
| C86  | 0.92047 | 0.59624 | 0.1999  | H121 | 0.73384 | 0.80863 | 0.37622 |
| C87  | 0.8765  | 0.58806 | 0.31246 | H122 | 0.68663 | 0.87134 | 0.44103 |
| C88  | 0.86581 | 0.54611 | 0.41449 | H123 | 0.31244 | 0.69026 | 0.39276 |
| C89  | 0.8631  | 0.44392 | 0.56591 | H124 | 0.3041  | 0.28983 | 0.73116 |
| C90  | 0.87116 | 0.40178 | 0.67739 | H125 | 0.58245 | 0.0094  | 0.26126 |
| C91  | 0.91405 | 0.39227 | 0.8097  | H126 | 0.63452 | 0.07045 | 0.21669 |

Continuous (Table S4)

|      | ( )     |         |         |      |         |         |         |
|------|---------|---------|---------|------|---------|---------|---------|
| H127 | 0.53346 | 0.15059 | 0.66837 | H163 | 0.73359 | 0.64624 | 0.33671 |
| H128 | 0.45612 | 0.14796 | 0.69321 | H164 | 0.78463 | 0.587   | 0.26857 |
| H129 | 0.34722 | 0.06115 | 0.81442 | H165 | 0.77901 | 0.40661 | 0.71084 |
| H130 | 0.39212 | 0.00132 | 0.74058 | H166 | 0.72569 | 0.34881 | 0.65517 |
| H131 | 0.6795  | 0.11938 | 0.59662 | H167 | 0.83206 | 0.26029 | 0.51082 |
| H132 | 0.72705 | 0.18229 | 0.61039 | H168 | 0.88563 | 0.31732 | 0.55087 |
| H133 | 0.61628 | 0.25915 | 0.30198 |      |         |         |         |
| H134 | 0.56905 | 0.19643 | 0.27979 |      |         |         |         |
| H135 | 0.41451 | 0.18952 | 1.01514 |      |         |         |         |
| H136 | 0.36991 | 0.25224 | 0.96365 |      |         |         |         |
| H137 | 0.26199 | 0.17838 | 0.53429 |      |         |         |         |
| H138 | 0.30837 | 0.11502 | 0.56079 |      |         |         |         |
| H139 | 0.01018 | 0.40186 | 0.37651 |      |         |         |         |
| H140 | 0.06938 | 0.35289 | 0.3861  |      |         |         |         |
| H141 | 0.16352 | 0.45211 | 0.58794 |      |         |         |         |
| H142 | 0.16464 | 0.53256 | 0.51203 |      |         |         |         |
| H143 | 0.07151 | 0.63416 | 0.6954  |      |         |         |         |
| H144 | 0.01133 | 0.58538 | 0.67976 |      |         |         |         |
| H145 | 0.10883 | 0.32088 | 0.82792 |      |         |         |         |
| H146 | 0.16086 | 0.2622  | 0.87285 |      |         |         |         |
| H147 | 0.26305 | 0.33846 | 0.40494 |      |         |         |         |
| H148 | 0.211   | 0.3974  | 0.34077 |      |         |         |         |
| H149 | 0.21319 | 0.58428 | 0.73895 |      |         |         |         |
| H150 | 0.2685  | 0.64118 | 0.69928 |      |         |         |         |
| H151 | 0.1694  | 0.72512 | 0.28721 |      |         |         |         |
| H152 | 0.11504 | 0.66864 | 0.3093  |      |         |         |         |
| H153 | 0.68694 | 0.2945  | 0.40803 |      |         |         |         |
| H154 | 0.70078 | 0.698   | 0.67275 |      |         |         |         |
| H155 | 0.98707 | 0.57316 | 0.16822 |      |         |         |         |
| H156 | 0.92953 | 0.62626 | 0.08139 |      |         |         |         |
| H157 | 0.83254 | 0.53741 | 0.48742 |      |         |         |         |
| H158 | 0.83107 | 0.45395 | 0.47169 |      |         |         |         |
| H159 | 0.92067 | 0.36213 | 0.93634 |      |         |         |         |
| H160 | 0.98114 | 0.41435 | 0.88524 |      |         |         |         |
| H161 | 0.89447 | 0.6712  | 0.44733 |      |         |         |         |
| H162 | 0.84316 | 0.73002 | 0.5045  |      |         |         |         |

| Sample Na         | me: BFTB-B           | CTA COF        |         |      |         |         |         |
|-------------------|----------------------|----------------|---------|------|---------|---------|---------|
| Space Grou        | Space Group: P 2 2 2 |                |         |      |         |         |         |
| a = 31.909,       | b = 28.274,          | c = 4.073      | α=β=γ=9 | 0°   |         |         |         |
| $R_{wp} = 5.82\%$ | <i></i>              | $R_p = 4.32\%$ |         |      |         |         |         |
| Atom              | x/a                  | y/b            | z/c     | Atom | x/a     | y/b     | z/c     |
| C1                | 0.4782               | 0.89691        | 0.4509  | H30  | 0.36647 | 0.92309 | 0.14984 |
| C2                | 0.53531              | 0.9432         | 0.57575 | H31  | 0.46553 | 0.82325 | 0.38283 |
| C3                | 0.42502              | 0.95225        | 0.29495 | H32  | 0.34053 | 0.86489 | 0.13417 |
| C4                | 0.3979               | 0.91449        | 0.22772 | H33  | 0.28831 | 0.80253 | 0.17692 |
| C5                | 0.41115              | 0.86689        | 0.2644  | H34  | 0.36325 | 0.71273 | 0.44166 |
| C6                | 0.45273              | 0.85852        | 0.36943 | H35  | 0.41362 | 0.77603 | 0.51659 |
| C7                | 0.38155              | 0.82667        | 0.20129 | H36  | 0.29727 | 0.6809  | 0.20463 |
| C8                | 0.34574              | 0.83266        | 0.00219 | H37  | 0.1742  | 0.74701 | 0.26064 |
| C9                | 0.31592              | 0.79669        | 0.02749 | H38  | 0.11561 | 0.69178 | 0.34041 |
| C10               | 0.32178              | 0.75324        | 0.13142 | H39  | 0.19155 | 0.57867 | 0.05205 |
| C11               | 0.35837              | 0.74587        | 0.31382 | H40  | 0.25016 | 0.63417 | 0.11907 |
| C12               | 0.38758              | 0.78228        | 0.35279 | H41  | 0.06446 | 0.64425 | 0.07522 |
| C13               | 0.28925              | 0.71625        | 0.12291 | H42  | 0.00795 | 0.59087 | 0.24475 |
| C14               | 0.21634              | 0.69439        | 0.07324 | H43  | 0.1558  | 0.54053 | 0.39398 |
| C15               | 0.17771              | 0.71036        | 0.18956 |      |         |         |         |
| C16               | 0.14441              | 0.67886        | 0.23242 |      |         |         |         |
| C17               | 0.14905              | 0.63076        | 0.15192 |      |         |         |         |
| C18               | 0.18743              | 0.61522        | 0.02015 |      |         |         |         |
| C19               | 0.22088              | 0.64677        | 0.01802 |      |         |         |         |
| C20               | 0.1147               | 0.59676        | 0.22132 |      |         |         |         |
| C21               | 0.07227              | 0.61           | 0.1771  |      |         |         |         |
| C22               | 0.03958              | 0.57927        | 0.26653 |      |         |         |         |
| C23               | 0.04907              | 0.53503        | 0.39677 |      |         |         |         |
| C24               | 0.09053              | 0.52215        | 0.43382 |      |         |         |         |
| C25               | 0.12386              | 0.55166        | 0.35021 |      |         |         |         |
| C26               | 0.5                  | 0.9759         | 0.5     |      |         |         |         |
| N27               | 0.25055              | 0.27284        | 0.94092 |      |         |         |         |
| N28               | 0.02248              | 0.5            | 0.5     |      |         |         |         |
| H29               | 0.41459              | 0.9876         | 0.24765 |      |         |         |         |

**Table S5.** Fractional atomic coordinates for the unit cell of BFTB-BCTA COF with AA-stacking.

#### S11. Organic Pollutant Treatment in Water

### Dye adsorption experiments

The organic dye RhB was selected to study the efficiency of the BFTB-PyTA, BFTB-BFTB, and BFTB-BCTA COFs for the removal of dyes from water. In a typical experiment, a BFTB-PyTA, BFTB-BFTB, or BFTB-BCTA COF (4 mg) was added to an aqueous solution of RhB (10 mL) in a glass vial and then the mixture was stirred (for 0, 5, 10, 15, 20, or 30 min) at a rate of 500 rpm. The supernatant was then isolated through centrifugation (6000 rpm, 10 min). The UV-Vis spectrum of the isolated supernatant was measured. To obtain adsorption isothermal curves, various concentrations of the aqueous dye (from 25 to 200 mg L<sup>-1</sup>) were used. For each test, a FTB-PyTA, BFTB-BFTB, or BFTB-BCTA COF (2 mg) was added to an aqueous solution of RhB (10 mL) in a glass vial and then the mixture was stirred (500 rpm) for 24 h. The supernatant was isolated through centrifugation and its UV-Vis spectrum recorded, to construct the isothermal curve. Adsorption reusability tests were performed by adding a BFTB-PyTA, BFTB-BFTB, or BFTB-BCTA COF (3 mg) to an aqueous solution of the dye (25 mg  $L^{-1}$ , 10 mL) and then stirring for 1 h. The supernatant was isolated and its UV-Vis spectrum recorded. The BFTB-PyTA, BFTB-BFTB, and BFTB-BCTA COFs were washed several times with H2O, EtOH, THF, and acetone to remove the adsorbed dye. After drying the BFTB-PyTA, BFTB-BFTB, and BFTB-BCTA COFs overnight at 100 °C, they were used in the next dye removal test. The adsorption isothermals of RhB was fitted using the Langmuir isothermal model (linear form), expressed as follows:

$$\frac{C_e}{Q_e} = \frac{1}{K_L Q_m} + \frac{C_e}{Q_m}$$

where  $C_e$  (mg L<sup>-1</sup>) is the equilibrium dye concentration in the liquid phase;  $Q_e$  (mg g<sup>-1</sup>) is the equilibrium adsorption of dye per unit mass of the adsorbent carbon;  $Q_m$  (mg g<sup>-1</sup>) is the maximum equilibrium adsorption of dye per unit mass of the adsorbent carbon; and  $K_L$  (L mg<sup>-1</sup>) is the Langmuir constant.



**Figure S13.** FT-IR spectra of (a) BFTB-PyTA COF, (b) rhodamine B (RhB), and (c) BFTB-PyTA COF after adsorbed rhodamine B. (d) Adsorption mechanism of rhodamine B on BFTB-PyTA COF.



**Figure S14.** FT-IR spectra of (a) BFTB-BFTB COF, (b) rhodamine B (RhB), and (c) BFTB-PyTA COF after adsorbed rhodamine B. (d) Adsorption mechanism of rhodamine B on BFTB- BFTB COF.



**Figure S15.** FT-IR spectra of (a) BFTB-BCTA COF, (b) rhodamine B (RhB), and (c) BFTB-PyTA COF after adsorbed rhodamine B. (d) Adsorption mechanism of rhodamine B on BFTB- BCTA COF.



**igure S16.** (a) Langmuir isothermal models and (b) adsorption isothermal curves for RhB on the BFTB-PyTA, BFTB-BFTB, and BFTB-BCTA COFs.



**ure S17.** Reusability of the (a) BFTB-PyTA, (b) BFTB-BFTB, and (c) BFTB-BCTA COFs for the removal of RhB within 10 min.

| ,             | U                                 | 0 1    |               |
|---------------|-----------------------------------|--------|---------------|
|               | $Q_{\rm m}$ (mg g <sup>-1</sup> ) | KL     | $R_{\rm L}^2$ |
| BFTB-PyTA COF | 2127                              | 0.7580 | 0.9903        |
| BFTB-BFTB COF | 1854                              | 0.6227 | 0.9891        |
| BFTB-BCTA COF | 1605                              | 0.4127 | 0.9949        |

**Table S6.** Fitted parameters for the adsorptions of RhB on the BFTB-PyTA, BFTB-BFTB, and BFTB-BCTA COFs, calculated using the Langmuir adsorption isothermal model.

**Table S7.** Maximum adsorption capacities of RhB on the BFTB-PyTA, BFTB-BFTB, and BFTB-BCTA COFs, compared with those of other reported materials.

| Adsorbent                        | Dye | $Q_m (mg g^{-1})$ | Ref.       |
|----------------------------------|-----|-------------------|------------|
| Graphene sponge                  | RhB | 72                | <b>S</b> 5 |
| Nanoporous PDVB-VI-0.2           | RhB | 260               | <b>S</b> 6 |
| S1                               | RhB | 200               | S7         |
| activated carbon (OAC)           | RhB | 321               | <b>S</b> 8 |
| Mesoporous carbon (ST-A)         | RhB | 83                | S9         |
| N-doped mesoporous gyroid carbon | RhB | 204.08            | S10        |
| PDVB-VI nanoporous polymer       | RhB | 260               | S11        |
| CMP-YA                           | RhB | 535               | S12        |
| Py-BF-CMP                        | RhB | 1905              | S13        |
| TPE-BF-CMP                       | RhB | 1024              | S13        |
| TPA-BF-CMP                       | RhB | 926               | S13        |
| Ttba-TPDA-COF                    | RhB | 833               | S14        |
| CuP-DMNDA-COF/Fe                 | RhB | 424               | S15        |
| BFTB-PyTA                        | RhB | 2127              | This work  |
| BFTB-BFTB                        | RhB | 1854              | This work  |
| BFTB-BCTA                        | RhB | 1605              | This work  |

## S12. Chemical stability of COFs



**Figure S18.** FTIR spectra of BFTB-PyTA COF (a) as-synthesized, (b) after recyclability from dye experiments and (a) after immersing 3 days in 1.0 M KOH.



**Figure S19.** FTIR spectra of BFTB-BFTB COF (a) as-synthesized, (b) after recyclability from dye experiments and (a) after immersing 3 days in 1.0 M KOH.



**Figure S20.** FTIR spectra of BFTB-BCTA COF (a) as-synthesized, (b) after recyclability from dye experiments and (a) after immersing 3 days in 1.0 M KOH.



**Figure S21.** PXRD patterns of BFTB-PyTA COF (a) as-synthesized, (b) after recyclability from dye experiments and (a) after immersing 3 days in 1.0 M KOH.



**Figure S22.** PXRD patterns of BFTB-BFTB COF (a) as-synthesized, (b) after recyclability from dye experiments and (a) after immersing 3 days in 1.0 M KOH.



**Figure S23.** PXRD patterns of BFTB-BCTA COF (a) as-synthesized, (b) after recyclability from dye experiments and (a) after immersing 3 days in 1.0 M KOH.

#### S13. Electrochemical measurements

All electrochemical measurements were performed using an Autolab potentiostat (PGSTAT204) in a three-electrode electrochemical cell. The performance of the electrodes was investigated through cyclic voltammetry (CV) and the galvanostatic charge-discharge (GCD) method in 1.0 M KOH as the electrolyte. A Pt wire was used as the counter electrode; Ag/AgCl was used as the reference electrode; a glassy carbon electrode (GCE) was used as the working electrode (diameter: 5.61 mm; 0.2475 cm<sup>2</sup>). Prior to use, the GCE was polished several times sequentially with 0.1- and 0.05- $\mu$ m alumina powder, washed with distilled water and EtOH after each polishing step, cleaned via sonication (5 min) in a water bath, washed with EtOH, and finally dried under a stream of N<sub>2</sub>.

The working electrode was prepared by coating a slurry containing the active material. The slurry was prepared by dispersing the active material (2.0 mg), carbon black (2.0 mg), and Nafion (0.4 mg) in EtOH (1.0 mL), which had undergone sonication for 1 h. A portion of the freshly prepared slurry (10  $\mu$ L) was coated onto the tip of the electrode, then dried in air for 30 min prior to use. The electrochemical performance was studied through CV at various sweep rates (from 5 to 200 mV s<sup>-1</sup>) and through the GCD method in the potential range from –1.0 to 0.0 V (vs. Ag/AgCl) at various current densities (from 0.5 to 20 A g<sup>-1</sup>) in 1 M KOH as the aqueous electrolyte. The specific gravimetric capacitance of each electrode was calculated from the CV curves by using the following equation (1):

$$C_g = \frac{1}{ms(Vf - VI)} \int_{Vi}^{Vf} I(V) dv$$
(1)

where  $C_g$  is the gravimetric capacitance (F g<sup>-1</sup>), *s* is the potential scan rate, *V* is the potential window, *I* is the current (A), *t* is the discharge time (s), and *m* is the mass of the active material (g).

Based on the GCD data, the gravimetric specific capacitance ( $C_g$ , F g<sup>-1</sup>) was calculated using the following equation (2):

 $C_g = \frac{I \times t}{m \times \Delta V} \tag{2}$ 

where *I* is the discharge current (A), *t* is the discharge time (s), *m* is the mass of the active material (g), and  $\Delta V$  is the potential change during the discharge process (V).



Figure S24. Cycling performances of a) BFTB-PyTA, b) BFTB-BFTB and c) BFTB-BCTA electrodes at 10 A  $g^{-1}$ .



Figure S25. (a) CV curves and (b) GCD curves of black carbon.

|            | Scan rate             | Discharge area | Cg                   | Retention |
|------------|-----------------------|----------------|----------------------|-----------|
|            | (mV s <sup>-1</sup> ) | $(cm^2)$       | (F g <sup>-1</sup> ) | (%)       |
|            | 5                     | 0.068          | 68.0                 |           |
|            | 10                    | 0.119          | 59.5                 |           |
|            | 30                    | 0.295          | 49.1                 |           |
| BFTB-PyTA  | 50                    | 0.451          | 45.1                 | 52.9      |
|            | 70                    | 0.598          | 42.7                 |           |
|            | 100                   | 0.805          | 40.3                 |           |
|            | 200                   | 1.410          | 35.3                 |           |
|            | 5                     | 0.084          | 84.5                 |           |
|            | 10                    | 0.148          | 74.2                 |           |
|            | 30                    | 0.377          | 62.8                 |           |
| BFTB- BFTB | 50                    | 0.574          | 57.5                 | 47.7      |
|            | 70                    | 0.754          | 53.8                 |           |
|            | 100                   | 0.992          | 49.5                 |           |
|            | 200                   | 1.613          | 40.3                 |           |
|            | 5                     | 0.089          | 89.9                 |           |
|            | 10                    | 0.145          | 72.6                 |           |
|            | 30                    | 0.339          | 56.5                 |           |
| BFTB-BCTA  | 50                    | 0.523          | 52.3                 | 47.4      |
|            | 70                    | 0.697          | 49.7                 |           |
|            | 100                   | 0.943          | 47.1                 |           |
|            | 200                   | 1.707          | 42.6                 |           |

**Table S8.** Gravimetric specific capacitance values calculated at different scan rates and retention.

| application.               |                        |                                                 |           |
|----------------------------|------------------------|-------------------------------------------------|-----------|
| COFs                       | $S_{BET} (m^2 g^{-1})$ | Capacitance                                     | Ref.      |
| Car-TPA COF                | 1334                   | 13.6 F g <sup>-1</sup> at 0.2 A g <sup>-1</sup> | S16       |
| Car-TPP COF                | 743                    | 14.5 F $g^{-1}$ at 0.2 A $g^{-1}$               | S16       |
| Car-TPT COF                | 721                    | 17.4 F g <sup>-1</sup> at 0.2 A g <sup>-1</sup> | S16       |
| DAAQ-TFP COF               | 1280                   | $48\pm10~F~g^{-1}$ at 0.1 A $g^{-1}$            | S17       |
| TPA-COF-1                  | 714                    | 51.3 F $g^{-1}$ at 0.2 A $g^{-1}$               | S18       |
| TPA-COF-2                  | 478                    | 14.4 F g <sup>-1</sup> at 0.2 A g <sup>-1</sup> | S18       |
| TPA-COF-3                  | 557                    | 5.1 F g <sup>-1</sup> at 0.2 A g <sup>-1</sup>  | S18       |
| TPT-COF-4                  | 1132                   | 2.4 F g <sup>-1</sup> at 0.2 A g <sup>-1</sup>  | S18       |
| TPT-COF-5                  | 1747                   | 0.34 F g <sup>-1</sup> at 0.2 A g <sup>-1</sup> | S18       |
| TPT-COF-6                  | 1535                   | 0.24 F g <sup>-1</sup> at 0.2 A g <sup>-1</sup> | S18       |
| TaPay-Py COF               | 687                    | 209 F g <sup>-1</sup> at 0.5 A g <sup>-1</sup>  | S19       |
| DAB-TFP COF                | 385                    | 98 F g <sup>-1</sup> at 0.5 A g <sup>-1</sup>   | S19       |
| TPT-DAHQ COF               | 1855                   | 256 F g <sup>-1</sup> at 0.5 A g <sup>-1</sup>  | S20       |
| PDC-MA COF                 | 748                    | 335 F $g^{-1}$ at 1.0 A $g^{-1}$                | S21       |
| TpPa-(OH) <sub>2</sub> COF | 369                    | 416 F $g^{-1}$ at 1.0 A $g^{-1}$                | S22       |
| BFTB-PyTA COF              | 1133                   | 71 F g <sup>-1</sup> at 1 A g <sup>-1</sup>     | This work |

**Table S9.** Comparison between the specific surface area/specific capacitance of BFTB-PyTA, BFTB-BFTB, and BFTB-BCTA COFs with those of previously reported COFs for supercapacitor application.

#### S14. Reference

- [S1] K. Brunner, A. V. Dijken, H. Borner, J. J. A. M. Bastiaansen, N. M. M. Kiggen and B. M. W. Langeveld, J. Am. Chem. Soc., 2004, 126, 6035-6042.
- [S2] J. Ipaktschi, R. Hosseinzadeh, P. Schlaf and E. Dreiseidler, *Helv. Chim. Acta.*, 1998, 81, 1821-1834.
- [S3] P. Rios, T. S. Carter, T. J. Mooibroek, M. P. Crump, M. Lisbjerg, M. Pittelkow, N. T. Supekar, G. J. Boons and A. P. Davis, *Angew. Chem. Int. Ed.*, 2016, 55, 3387-3392.
- [S4] H. R. Abuzeid, A. F. M. EL-Mahdy and S. W. Kuo, *Microporous Mesoporous Mater.*, 2020, 300, 110151.
- [S5] J. Zhao, W. Ren and H. M. Cheng, J. Mater. Chem., 2012, 22, 20197-20202.
- [S6] Y. Han, W. Li, J. Zhang, H. Meng, Y. Xu and X. Zhang, RSC Adv., 2015, 5, 104915-104922.
- [S7] S. Wang, B. Yang and Y. Liu, J. Colloid Interface Sci., 2017, 507, 225-233.
- [S8] O. Üner, Ü. Geçgel, H. Kolancilar and Y. Bayrak, Chem. Eng. Commun., 2017, 204, 772-783.
- [S9] K. Jedynak, D. Wideł and N. Redzia, Colloids Interfaces, 2019, 3, 30.
- [S10] A. F. M. EL-Mahdy, T. E. Liu and S. W. Kuo, J. Hazard. Mater., 2020, 391, 122163.
- [S11] Y. Han, W. Li, J. Zhang, H. Meng, Y. Xu and X. Zhang, RSC Adv., 2015, 5, 104915-104922.
- [S12] Y. Yuan, H. Huang, L. Chen and Y. Chen, *Macromolecules*, 2017, 50, 4993–5003.
- [S13] B. Wang, Z. Xie, Y. Li, Z. Yang and L. Chen, Macromolecules, 2018, 51, 3443-3449.
- [S14] T. Xu, S. An, C. Peng, J. Hu and H. Liu, Ind. Eng. Chem. Res., 2020, 59, 8315-8322.
- [S15] Y. Hou, X. Zhang, C. Wang, D. Qi, Y. Gu, Z. Wang, and J. Jiang, New J. Chem., 2017, 41, 6145-6151.
- [S16] A. F. M. El-Mahdy, C. Young, J. Kim, J. You, Y. Yamauchi and S. W. Kuo, ACS Appl. Mater. Interfaces, 2019, 11, 9343–9354.
- [S17] C. R. DeBlase, K. E. Silberstein, T. T. Truong, H. D. Abruña and W. R. Dichtel, J. Am. Chem. Soc., 2013, 135, 16821-16824.
- [S18] A. F. M. El-Mahdy, C. H. Kuo, A. Alshehri, C. Young, Y. Yamauchi, J. Kim and S. W. Kuo, J. Mater. Chem. A, 2018, 6, 19532–19541.
- [S19] A. M. Khattak, Z. A. Ghazi, B. Liang, N. A. Khan, A. Iqbal, L. Li and Z. Tang, J. Mater. Chem. A, 2016, 4, 16312-16317.
- [S20] A. F. M. EL-Mahdy, Y. –H. Hung, T. H. Mansoure, H. –H. Yu, T. Chen, and S. W. Kuo, *Chem. Asian J.*, 2019, 14, 1429-1435.
- [S21] L. Li, F. Lu, R. Xue, B. Ma, Q. Li, N. Wu, H. Liu, W. Yao, H. Guo, and W. Yang, ACS Appl. Mater. Interfaces 2019, 11, 26355-26363.
- [S22] S. Chandra, D. R. Chowdhury, M. Addicoat, T. Heine, A. Paul, and R. Banerjee, *Chem. Mater.* 2017, 29, 2074-2080.