Promoting polysulfide conversion by catalytic separator with LiNiPO₄ and rGO hybrids for high performance lithium–sulfur

batteries

Yinze Zuo^{a,b}, Yuejin Zhu^{a,d}, Qi Wang^{a,b}, Kezhong Lv^{a,b}, Weiming Su^{a,b}, Yuefeng Tang^{a,b,c*} and

Yanfeng Chen^{a,b}

^aNational Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China.

^bCollaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.

°SuZhou Sun Sources Nano Science and Technology Co. Ltd., ChangShu, SuZhou

215513, China.

^dInstitute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China.

*E-mail: <u>yftang@nju.edu.cn</u>

Fig. S2. (a) The SEM image of pristine separator and (b) surface wetting of electrolyte droplets on the pristine separator (PP) and LNPO/rGO modified separator.

Fig. S3. (a)XPS and HRXPS spectra of the C 1s, Li 1s, Ni 2p, P 2p, O 1s in LNPO/rGO hybrids.

Fig. S4. Capacity optimization of LNPO content in the LNPO/rGO modified

separator.

Fig. S5. XRD pattern of LNPO/rGO modified separator after cycling and standard XRD patterns sulfur and Li₂S powder.

Fig. S6. The equivalent circuit diagram of the Nyquist plots.

Fig. S7. Digital photographs of the Li₂S₆ diffusion tests for the pristine separator (top) and LNPO/rGO modified separator (bottom)

Fig. S8. (a) SEM images of the surface of (a) the pristine Li metal; the surface of Li metals in the cell with the (b) pristine separator, (c) rGO modified separator and (d) LNPO/rGO modified separator after cycling.

Fig. S9. (a) SEM image and corresponding elemental mapping images of (b) C, (c) Ni, (d) O, (e) P and (f) S elements of the LNPO/rGO modified separator after cycling and HRXPS spectra of (g) S 2p; and (h) Li 1s of the LNPO/rGO modified separator after cycling.

cells						
Coating or interlayer	Sulfur loading (mg cm ⁻²)	Sulfur content (%)	Cycle number	Reversible capacity (mAh cm ⁻²)	Capacity retention (%)	Ref
MoO ₃ /CNT	1	60	400	655	55	S1
Cu ₂ (CuTCPP)	2	70	900	604	71	S2
MoO_2/Mo_2N	1.1	70	900	461	58	S 3
GA/CNFs/Ni	1.5	90	500	620	71	S4
CNFs/VS ₄	1.25	80	600	520	57	S 5
AC/Ni/N	2	80	700	575	65	S6
LNPO/rGO	1.5	80	1400	629	67	This work

Table S1. Comparison of electrochemical properties functional separators in Li–S

Coating or interlayer	Sulfur loading (mg cm ⁻²)	Sulfur content (%)	Cathode	Discharge Capacity (mAh g ⁻¹)	Areal capacity (mAh cm ⁻²)	Electrolyte/ Sulfur ratio	Ref
GO@MoS ₂	3.64	70%	CB/S	~600 mAh g ⁻¹ , 95th, 0.2 C	2.2	14	S 7
SSNS/CNT	1.0	65%	KB/S	680 mAh g ⁻ ¹ , 100th, 0.2 C	<2.0	N/A	S8
CNF@ZrO ₂	2.7	70%	CB/S	800 mAh g ⁻ ¹ , 60th, 0.2 C	~2.1	40	S9
TiN	1.3	70%	Super P/S	744 mAh g ⁻¹ 200th, 0.5 C	<2.0	46	S10
g-C ₃ N ₄	4.0	45%	GO/S	~600 mAn g ⁻¹ , 60th, 0.2 C	~2.4	20	S11
СоР	3.24	56%	rGO/S	~800 mAh g ⁻¹ , 100th, 0.2 C	~2.7	N/A	S12
LNPO/rGO	6	80%	CB/S	~623 mAh g ⁻¹ , 300th, 0.3 C	4.2	8.3	This work

 Table S2. Comparison of electrochemical properties functional separators in Li–S

 cells with high sulfur loading

Table S3. The impedance parameters simulated from the equivalent circuit

fitting of different cells					
Sample	$R_o(\Omega)$	$R_{ct}(\Omega)$			
LNPO/rGO	23.17	517			
rGO	56.32	1853			

[S1] L. Y. Luo, X. Y. Qin, J. X. Wu, G. M. Liang, Q. Li, M. Liu, F. Y. Kang, G. H. Chen, B. H. Li, An interwoven MoO₃@CNT scaffold interlayer for high-performance lithium-sulfur batteries, *J. Mater. Chem. A*, **2018**, 6, 8612-8619.

[S2] M. Tian, F. Pei, M. S. Yao, Z. H. Fu, L. L. Lin, G. D. Wu, G. Xu, H. Kitagawa, X. L. Fang, Ultrathin MOF nanosheet assembled highly oriented microporous membrane as an interlayer for lithium-sulfur batteries, *Energy Storage Mater.* **2019**, 21, 14-21.

[S3] J. L. Yang, S. X. Zhao, Y. M. Lu, X. T. Zeng, W. Lv, G. Z. Cao, In-situ

topochemical nitridation derivative MoO₂–Mo₂N binary nanobelts as multifunctional interlayer for fast-kinetic Li-Sulfur batteries, *Nano energy*, **2020**, 68, 104356.

[S4] Y. Zhang, R. Wang, W. Tang, L. Zhan, S. Zhao, Q. Kang, Y. Wang, S. Yang, Efficient polysulfide barrier of a graphene aerogel-carbon nanofibers-Ni network for highenergy-density lithium-sulfur batteries with ultrahigh sulfur content, *J. Mater. Chem. A*, **2018**, 6, 20926-20938.

[S5] Y. Zhang, G. Xu, Q. Kang, L. Zhan, W. Tang, Y. Yu, K. Shen, H. Wang, X. Chu, J. Wang, S. Zhao, Y. Wang, L. Ling, S. Yang, Synergistic electrocatalysis of polysulfides by a nanostructured VS₄-carbon nanofiber functional separator for high-performance lithium-sulfur batteries, *J. Mater. Chem. A*, **2019**, 7, 16812-16820.

[S6] Y. Zuo, M. Zhao, P. Ren, W. Su, J. Zhou, Y. Chen, Y. Tang, Y. Chen, An efficient polysulfide trapper of an nitrogen and nickel-decorating amylum scaffold-coated separator for ultrahigh performance in lithium-sulfur batteries, *J. Mater. Chem. A*, **2020**, 8, 1238-1246.

[S7] L. Tan, X. H. Li, Z. X. Wang, H. J. Guo, J. X. Wang, Lightweight reduced graphene oxide@MoS₂ interlayer as polysulfide barrier for high-performance lithium-sulfur batteries, *ACS Appl. Mater. Interfaces*, **2018**, 10, 3707-3713

[S8] S. S. Yao, J. C, J. Q. Huang, Z. H. Lu, Y. Deng, W. G. Chong, J. X. Wu, M. Haq,
F. Ciucci, J. K. Kim, Novel 2D Sb₂S₃ nanosheet/CNT coupling layer for exceptional polysulfide recycling performance, *Adv. Energy Mater.*, **2018**, 1800710.

[S9] Y. Li, J. Zhu, R. Shi, M. Dirican, P. Zhu, C. Yan, H. Jia, J. Zang, J. He, X. Zhang, Ultrafine and polar ZrO₂-inlaid porous nitrogen-doped carbon nanofiber as efficient polysulfide absorbent for high-performance lithium-sulfur batteries with long lifespan, *Chem. Eng. J.*, **2018**, 349, 376-387.

[S10] B. Y. Hao, H. Li, W. Lv, Y. B. Zhang, S. Z. Niu, Q. Qi, S. J. Xiao, J. Li, F. Y. Kang, Q. H. Yang, Reviving catalytic activity of nitrides by the doping of the inert surface layer to promote polysulfide conversion in lithium-sulfur batteries, *Nano Energy*, **2019**, 60, 305-311.

[S11] Y. Huang, T. Zheng, K. Zhang, X. She, H. Xu, Z. Fang, K. Xie, Facile fabrication of permselective g-C₃N₄ separator for improved lithium-sulfur batteries, *Electrochim*.

Acta, 2018, 272, 60-67.

[S12] X. X. Chen, X. Y. Ding, C. S. Wang, Z. Y. Feng, L. Q. Xu, X. Gao, Y. J. Zhai,D. B. Wang, A multi-shelled CoP nanosphere modified separator for highly efficientLi–S batteries, *Nanoscale*, 2018, 10, 13694.