Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Fig. S1 (a) SEM and (b) TEM images of Pd NWs.

Fig. S2 XRD pattern of the Pd NWs.

Energy (keV)

Fig. S3 EDX spectrum of P-Pd₄S NWs.

Fig. S4 (a) HAADF-STEM image and (b) corresponding EDX line scanning profile of P-Pd₄S NWs.

Fig. S5 (a) SEM image, (b) TEM image, (c) HAADF-STEM image and the corresponding elemental mapping of the Pd₄S NWs.

Fig. S6 XRD pattern of the Pd₄S NWs.

Fig. S7 XPS survey spectra of the Pd NWs (a) and Pd₄S NWs (b).

Fig. S8 The unit cells of (a)Pd₄S and (b)P-Pd₄S.

Fig. S9 (a) CV curves for the Pd_4S NWs and P-Pd₄S NWs recorded in 0.5 M H₂SO₄ with a scan rate of 50 mV s⁻¹. (b) The regions between -0.05 and 0.15 V from (a).

Fig. S10 (a) LSV HER curves of the P-Pd₄S NWs with or without 10 mM KSCN in 0.5 M H_2SO_4 . (b) The comparison of the cathodic current densities of the P-Pd₄S NWs with or without 10 mM KSCN in 0.5 M H_2SO_4 at -0.075 V (vs. RHE).

Fig. S11 CV curves with different scan rates for P-Pd₄S NWs (a) and Pd₄S NWs (b).

Fig. S12 Electrochemical impedance spectra (EIS) of P-Pd₄S NWs and Pd₄S NWs at 300 mV overpotential.

Fig. S13 V-t curve recorded at a current of 10 mA cm⁻² for Pt/C.

Fig. S14 (a) TEM image and (b) HAADF-STEM and the corresponding elemental mapping of the P-Pd₄S NWs after HER stability testing.

Fig. S15 XRD patterns of the fresh and post-HER P-Pd₄S NWs.

Fig. S16 (a) XPS survey spectra, (b) high-resolution Pd 3d XPS spectra, (c) high-resolution S 2p XPS spectra, (d) high-resolution P 2p spectra of the fresh and post-HER P-Pd₄S NWs.

Table S1. Comparison of HER activity for the P-Pd₄S NWs and some other reported non-Pt-based electrocatalysts.

Catalyst	Overpotential at - 10 mA cm ⁻² (mV)	Tafel slop (mV dec- ¹)	Electrolyte	Ref.
P-Pd ₄ S NWs	47	32.7	0.5 M H ₂ SO ₄	This work
Ni _{1.4} (Fe _{0.6})P@Al ₂ O ₃	53	38	0.5 M H ₂ SO ₄	1
Rh ₃ Pb ₂ S ₂ /C	87.3	45.6	0.5 M H ₂ SO ₄	2
MoP@NCF	121.8	627	0.5 M H ₂ SO ₄	3
Ru ₂ P nanoparticles	55	34.1	0.5 M H ₂ SO ₄	4
P-CoTe ₂ /C nanoparticles	159	64.62	0.5 M H ₂ SO ₄	5
$Pd_3P_2S_8$	52	29	0.5 M H ₂ SO ₄	6
P-Fe ₃ O ₄ @3DG	65	50.2	0.5 M H ₂ SO ₄	7
P-MoS ₂	118	52	0.5 M H ₂ SO ₄	8
MoC _x /C	50	62	0.5 M H ₂ SO ₄	9
CoP/NPC/TF	91	54	0.5 M H ₂ SO ₄	10
Ni ₃ (VO4) ₂	90	50	0.5 M H ₂ SO ₄	11
MoP@NC	135	57	0.5 M H ₂ SO ₄	12
CoP/NiCoP	60	64	0.5 M H ₂ SO ₄	13
Pd-CoS ₂ -MoS ₂ /C-600	144	59.9	0.5 M H ₂ SO ₄	14
Al–NiP ₂ NSs/CFP	58	46	0.5 M H ₂ SO ₄	15

References

- [1] J. Xu, Z. Liu, Z. Wei, S. Zhang, C. Guo and M. He, *Electrochim. Acta*, 2020, 349, 136417.
- [2] T. Kim, J. Park, H. Jin, A. Oh, H. Baik, S. H. Joo and K. Lee, Nanoscale, 2018, 10, 9845-9850.
- [3] X. Huang, X. Wang, P. Jiang, K. Lan, J. Qin, L. Gong, K. Wang, M. Yang, L. Ma and R. Li, *Inorg. Chem. Front.*, 2019, 6, 1482-1489.
- [4] Y. Wang, Z. Liu, H. Liu, N. T. Suen, X. Yu and L. Feng, ChemSusChem, 2018, 11, 2724-2729.
- [5] Q. Wang, K. Cui, J. Li, Y. Wu, Y. Yang, X. Zhou, G. Ma, Z. Yang, Z. Lei and S. Ren, *Nanoscale*, 2020, **12**, 9171-9177.
- [6] X. Zhang, Z. Luo, P. Yu, Y. Cai, Y. Du, D. Wu, S. Gao, C. Tan, Z. Li, M. Ren, T. Osipowicz, S. Chen, Z. Jiang, J. Li, Y. Huang, J. Yang, Y. Chen, C. Y. Ang, Y. Zhao, P. Wang, L. Song, X. Wu, Z. Liu, A. Borgna and H. Zhang, *Nat. Catal.*, 2018, 1, 460-468.
- [7] S. Li, X. Jian, J. Liu, S. Guo, C. Zhou, P. Zhang, Y. Yang and L. Chen, *Int. J. Hydrogen Energy*, 2020, 45, 4435-4443.
- [8] X. Ren, F. Yang, R. Chen, P. Ren and Y. Wang, New J. Chem., 2020, 44, 1493-1499.
- [9] L. Zhang, H. Yang, D. K. J. A. Wanigarathna and B. Liu, Small Methods, 2018, 2, 1700353.
- [10] X. Huang, X. Xu, C. Li, D. Wu, D. Cheng and D. Cao, Adv. Energy Mater., 2019, 9, 1803970.
- [11] B. Chang, G. Zhao, Y. Shao, L. Zhang, B. Huang, Y. Wu and X. Hao, *J. Mater. Chem. A*, 2017, 5, 18038-18043.
- [12] S. Gao, Y. Liu, G.-D. Li, Y. Guo, Y. Zou and X. Zou, *Electrochim. Acta*, 2016, 199, 99-107.
- [13] R. Boppella, J. Tan, W. Yang and J. Moon, Adv. Funct. Mater., 2018, 29, 1807976.
- [14] Z. X. Cai, J. Na, J. Lin, A. A. Alshehri, K. A. Alzahrani, Y. G. Alghamdi, H. Lim, J. Zheng, W. Xia, Z. L. Wang and Y. Yamauchi, *Chem. Eur. J.*, 2020, 26, 6195-6204.
- [15] H. Tian, X. Wang, H. Li, M. Pi, D. Zhang and S. Chen, *Energy Technol.*, 2019, 8, 1900936.