Supplementary Information

In-situ growth of tungsten carbide nanoparticles on nanocarbon as electrocatalyst promotes redox reaction kinetics of high mass loading sulfur cathode for high volumetric performance

Jing Zhang ^{a,†}, Shaorong Duan ^{b,†} Caiyin You ^{a*}, Jian Wang ^c, Haitao Liu ^d, Shaohua Guo ^a, Weihua Zhang ^a, Rong Yang ^e

 ^a School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, P. R. China
^b State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
^c i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, P. R. China
^d Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing, 100088, China
^e School of Sciences, Xi'an University of Technology, Xi'an 710048, P. R. China

* Corresponding author: caiyinyou@xaut.edu.cn

[†] These authors contributed equally to this work.

Fig. S1 (a) SEM image of HCPC; (b) Component analysis from the bright spots in the ADF-TEM image of WCNP@HCPC (the inset).

Fig. S1 (b) shows the energy-dispersive X-ray spectrum (EDX) of WC NPs (the bright spots highlighted by red dashed line) from the scanning TEM (STEM) image. The characteristic peaks of W and C are perfectly assigned to the WC NPs, while the peaks of Cu are attributed to the sample grid.

Fig. S2 N₂ adsorption/desorption isotherms and the inset of the pore size distribution of WCNP@HCPC-S and HCPC-S composites.

Fig. S3 Elemental mapping of WCNP@HCPC-S composite, including: elemental sulfur, carbon and tungsten.

Fig. S4 (a) TGA curve of WCNP@HCPC-S under N_2 flow atmosphere; (b) TGA curve of WCNP@HCPC under O_2 flow atmosphere.

The TGA curve of WCNP@HCPC (Fig. S2b) under O_2 flow atmosphere reveals the mass residual of 13 wt % after heating. According to the reaction equation (1), the weight of the WC increases to nearly 1.2 times when it is transformed to WO₃ under the high temperature heating. Therefore, it could be deduced that the remained mass in Fig. S2b is evaluated to be about 10.5 wt% (12.6% / 1.2) WC. This experimental result matches well with the nominal designed ratio.

$$WC + 2O_2 \xrightarrow{\Delta} WO_3 + CO \tag{1}$$

Fig.S5 Photo image of polysulfide solution after soaking in the adsorbents for

12 h: I Control; II WCB@HCPC; III WCNP@HCPC; IV HCPC.

Fig. S6 Cyclic voltammetry (CV) curves of (a) WCNP@HCPC-S; (b) WCB@HCPC-S and (c) HCPC-S cathodes within the scan range from 1.6 to 2.8V (vs. Li/Li+) at the scan rate of 0.1mV s⁻¹.

Fig. S7 CV curves of (a) WCB@HCPC-S and (b) HCPC-S cathodes depending on different scan rates.

Fig. S8 Voltage-capacity profiles of (a) WCB@HCPC-S and (b) HCPC-S cathodes at rates varying from 0.1 to 6 C

Fig. S9 Comparison of the capacity decay of this work at high rate with the recent articles

Fig. S10 Cycle performance of the cathodes at (a) 0.1 C, (b) 0.2 C and (c) 0.5 C.

Fig. S11 The calculated delithiation models of Li_2S on HCPC surface in the (a) initially adsorbed and (b) decomposed structure.

Samples	Tafel slop	Exchange current density
	(mV dec⁻¹)	(mA cm ⁻²)
WCNP@HCPC-S	19.3	0.29
WCB@HCPC-S	26.5	0.20
HCPC-S	52.4	0.13

Table S1 Electrochemical parameters derived from Tafel plots

Samples	Adsorption energy (eV)	Delithiation energy barriers (eV)
HCPC	-0.64	2.14
WC (0001)	-5.82	0.10
WC (10 ¹ 0)	-5.69	0.06

Table S2 Comparison of adsorption energy and delithiation energy barriers