Electronic Supplementary Information

Layered cobalt oxide epitaxial films exhibiting thermoelectric ZT = 0.11 at room temperature

Yugo Takashima,^a Yu-qiao Zhang,^{*b} Jiake Wei,^{c,d} Bin Feng,^c Yuichi Ikuhara,^{c,d} Hai Jun Cho,^{a,b} and Hiromichi Ohta^{*a,b}

Author affiliations

* Corresponding authors

^aGraduate School of Information Science and Technology, Hokkaido University,

N14W9, Kita, Sapporo 060-0814, Japan

^bResearch Institute for Electronic Science, Hokkaido University, N20W10, Kita,

Sapporo 001-0020, Japan

E-mail: yuqiaozhang0730@gmail.com

E-mail: hiromichi.ohta@es.hokudai.ac.jp

^cInstitute of Engineering Innovation, The University of Tokyo, 2–11–16 Yayoi, Bunkyo,

Tokyo 113-8656, Japan

dElements Strategy Initiative for Structural Materials, Kyoto University, Yoshida-

honmachi, Sakyo-ku, Kyoto 606-8501, Japan

Table S1. Thermoelectric properties of the layered cobaltite epitaxial films in the inplane direction at room temperature. In addition to the observed properties, we calculated the lattice thermal conductivity ($\kappa_{\text{lattice}} = \kappa_{\text{obsd}} - \kappa_{\text{electron}}$). The electron thermal conductivity (κ_{electron}) was estimated by assuming the Wiedemann-Franz law ($\kappa_{\text{electron}} = L \cdot \sigma \cdot T$, where the *L* is 2.44 × 10⁻⁸ W Ω K⁻²).

	Ca _{1/3} CoO ₂ ¹⁹	Na _{0.75} CoO ₂	Sr _{1/3} CoO ₂ ²¹	Ba _{0.27} CoO ₂
$\sigma_{\rm in}({ m S}{ m cm}^{-1})$	1330	1330	890	2310
$S_{\rm in}$ ($\mu V K^{-1}$)	+90	+96	+115	+72
$PF_{in} (mW m^{-1} K^{-2})$	1.08	1.23	1.18	1.20
$\kappa_{\text{in obsd}} (\text{W m}^{-1} \text{K}^{-1})$	6.79	5.46	4.51	3.29
$\kappa_{\rm in \ electron} ({\rm W \ m^{-1}})$	0.98	0.97	0.65	1.69
K^{-1})				
$\kappa_{\text{in lattice}} (\text{W m}^{-1} \text{ K}^{-1})$	5.81	4.49	3.86	1.60
$ZT_{\rm in}$	0.048	0.067	0.078	0.11

Figure S1. Typical thermo-electromotive force (ΔV) vs. temperature difference (ΔT) plot of the resultant Ba_{0.27}CoO₂ epitaxial film at room temperature. The thermopower (*S*) was calculated to be +72 μ V K⁻¹ as the linear slope of the $\Delta T - \Delta V$ plot. The coefficient of determination (R²) was 0.999.

Figure S2. Average crystal tilting of the resultant films in the out-of-plane direction. Out-of-plane X-ray rocking curves of (a) 111 CoO after step 1, (b) 0002 Na_{0.75}CoO₂ after step 2, and (c) 0002 Ba_{1/3}CoO₂ after step 3. The full-width at half maximum (FWHM) values are (a) ~0.02°, (b) ~0.6° and (c) ~0.8°, respectively. Since the topographic AFM images of these films [Figs. 3(d)–(f)] show grain growth tendency, the increasing tendency of the FWHM values reflects the warp of the films, not mosaicity.

Figure S3. Change in the in-plane XRD pattern of the resultant films on (0001) α -Al₂O₃ substrate. (a) After step 1 (CoO), (b) after step 2 (Na_{0.75}CoO₂), and (c) after step 3 (Ba_{1/3}CoO₂). The epitaxial relationship of (a) is (111)[110] CoO || (0001)[1-100] α -Al₂O₃, (b) is (0001)[1-120] Na_{0.75}CoO₂ || (0001)[1-100] α -Al₂O₃, and (c) is (0001)[1-120] Ba_{1/3}CoO₂) || (0001)[1-100] α -Al₂O₃, respectively. Several diffraction peaks due to sublattices of Na (1/2 and 7/13) and Ba (1/3, 1/2, and 2/3) are clearly seen in (b) and (c).

Figure S4. Change in the in-plane XRD pattern of the resultant films on (1-100) α -Al₂O₃ substrate. (a) After step 1 (CoO), (b) after step 2 (Na_{0.75}CoO₂), and (c) after step 3 (Ba_{1/3}CoO₂). The epitaxial relationship of (a) is [110] CoO || [0001] α -Al₂O₃, (b) is [1-120] Na_{0.75}CoO₂) || [0001] α -Al₂O₃, and (c) is [1-120] Ba_{1/3}CoO₂ || [0001] α -Al₂O₃, respectively. Several diffraction peaks due to sublattices of Ba (1/3 and 1/2) are clearly seen in (c).

Figure S5. The atomic arrangement of the $Ba_{0.27}CoO_2$ films. The magnified HAADF-STEM image of the film grown on (a) (0001) α -Al₂O₃ substrate and (b) (1-100) α -Al₂O₃ substrate. The schematic crystal structure of $Ba_{1/3}CoO_2$ (c) is superimposed in the STEM images. The Ba and CoO₂ layers are stacked parallel to the (0001) substrate surface whereas Ba and CoO₂ layers are inclined 55° to the (1-100) substrate surface.

Figure S6. Thermal conductivity of the Ba_{0.27}CoO₂ epitaxial films at room temperature. (a) Decay curves of TDTR signal. The 55° inclined film shows faster decay. (b) Thermal conductivity of the Ba_{0.27}CoO₂ epitaxial films. The observed thermal conductivity of the *c*-axis oriented Ba_{0.27}CoO₂ epitaxial film ($\theta = 0^{\circ}$) was 1.3 W m⁻¹ K⁻¹ and that of the 55° inclined film was 2.8 W m⁻¹ K⁻¹. The thermal conductivity along the CoO₂ layer ($\theta = 90^{\circ}$) was obtained theoretically using these values.