Supporting Information

Predicting the performance of polyvinylidene fluoride, polyethersulfone and polysulfone filtration membranes using

machine learning

Tingli Liu,^{ab} Lunyang Liu,^{*ab} Fengchao Cui,^{ab} Fang Ding,^{ab} Qifeng Zhang^{ab} and

Yunqi Li*ab

^a Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials
& Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China;
^b University of Science and Technology of China, Hefei 230026, China.

* To whom correspondence should be addressed. E-mail: lyliu@ciac.ac.cn;

yunqi@ciac.ac.cn. Phone: +86 (0)431 85262535

Figures and Tables in supplementary

Fig. S1 (a) The histogram of annual publications for polyethersulfone, polysulfone and polyvinylidene fluoride filtration membranes, and (b) the distribution of these publications and their citations in various journals, the height and the color of bars correspond to the number of publications and the cited times accumulated in each journal, respectively.

Fig. S2 The Root-Mean Square Error (RMSE) in the numeric regression for Lp (a), $1/S_0$ (b) and Tr (c) using Recursive Feature Elimination against the number of features. The red circle labeled the number of features (17) that finally engaged in predictive model construction.

Fig. S3 The ranking of feature importance using RF algorithm (grey circle), Pearson correlation coefficient (Rp, blue diamond) and Spearman correlation coefficient (Rs, red dot) between features and structure parameters including thickness (a), porosity (b), surface water contact angle (CA) (c) and surface roughness (Sa) (d).

Fig. S4 Plots for the predicted vs. experimental values for models integrated four structural features in the prediction of Lp (a), $1/S_0$ (b) and Tr (c). The orange dashed lines indicate the upper and lower cutoff at 95% confidential coverage.

Fig. S5 The user interface of polySML. Parameters in composition, fabrication and test condition, as well as the chemical structure of additives can be readily adjusted in virtual experiments. Predicted performance indexes in the reference to the whole dataset are illustrated and exact predicted values and classification are presented.

ID	Category	Feature	Unit	Description
1		p_C		The weight fraction of base polymer
2		a_C	wt%	The weight fraction of addition agent in casting
3		s_C		solution The weight fraction of solvent in casting solution
4		p_Disp		Hansen solubility parameter (Dispersion force for monomer in polymer)
5	Composition of	s_Disp		Hansen solubility parameter (Dispersion force for solvent)
6	casting solution	RED_S	-	The relative energy difference between base polymer and solvent
7		RED_NS		The relative energy difference between base polymer and non-solvent
8		s_Bp	°C	Boiling point for solvent and non-solvent
9		s_Vp	mmHg	The saturated vapor pressure at 25°C for solvent and non- solvent
10		HDT	°C	Heat Deflection Temperature with loading of 1.8MPa
11		coag_T	°C	The temperature of coagulation bath
12		pre_T	°C	The temperature during membrane formation
13	Fabrication and test conditions	exposed.time	S	The exposed time before immersing the casting solution into the non-solvent
14		wet_mem_thick	μm	The thickness of solution on the substrate controlled by the scraper
15		flux_P	kPa	Transmembrane pressure in performance measurement
16		rej_C	wt%	The concentration of substance (protein, salt etc,) in feeding flux

Table S1 Description of Features in the construction of predictive models forPES/PSF/PVDF micro-/ultra-/nano-filtration membranes.

					The type of separation
1	17		rej_type	-	substance
1	18		rai aharga		The charge of separation
1			lej_charge	-	substance
1	10		rei r	nm	The radius of rejection
			10 <u>j</u> 1	11111	substance
2	20		thickness	μm	Thickness of dry membrane
2	21 22		porosity	%	Volume fraction of water
-			porosity		accessible voids in membrane
2		Structure parameters	CA	0	Water static contact angle on
-					membrane surface
2	23		Sa	nm	Mean roughness of membrane
_				IIII	surface
2	24 25 26		fun MolLogP		Wildman-Crippen LogP value
-			1011_11101210B1		of the functional group
2		MolLogP			Wildman-Crippen LogP value
					Hall-Kier Kappa values, Rev.
2		Kappa2			Comput. Chem. 2:367-422
					(1991)
	27				Hall-Kier Kappa values, Rev.
2		Kappa3			Comput. Chem. 2:367-422
		Computational			(1991)
2	28	features based on	MinAbsEStateIndex	-	Minimum absolute value of
		SMILES			Estate index
2	29		MinEStateIndex		Minimum value of Estate
					index
3	30		MinPartialCharge		Minimum partial charge of
					molecular
3	31	MaxPartialCharge			Maximum partial charge of
			C		molecular
3	32		FractionCSP3		Fraction of C atoms that are
					SP3 hybridized.

Performance index	Without structure feature		With structure feature				
-	R ²	Cov	Feature added	Number of Vectors	R ²	Cov	
Lp	0.85	0.83	porosity	845	0.89	0.94	
			СА	765	0.91	0.94	
			thickness	298	0.90	0.95	
			Sa	196	0.87	0.93	
1/S ₀	0.79	0.94	porosity	610	0.83	0.93	
			CA	551	0.80	0.94	
			thickness	208	0.76	0.92	
			Sa	141	0.76	0.92	
Tr	0.83	0.92	porosity	591	0.81	0.94	
			СА	541	0.89	0.94	
			thickness	206	0.89	0.95	
			Sa	133	0.89	0.93	

Table S2 Prediction evaluation for performance indexes with structure features using Random Forest. Structure information has the best positive impact on the predictive models were shown in bold.