Supplementary Information

Nickel-Doped Pyrrhotite Iron Sulfide Nanosheets as Highly Efficient Electrocatalysts for Water Splitting

Zhongxin Jing,^a Qingyun Zhao,^a Dehua Zheng,^{*a} Lei Sun,^a Jiahui Geng,^a Qiannan

Zhou,^a and Jianjian Lin*^a

^a Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering,

Qingdao University of Science and Technology, Qingdao 266042, PR China

*Corresponding author: Dehua Zheng; Jianjian Lin

Email address: <u>Zhengdehua@qust.edu.cn; Jianjian_Lin@qust.edu.cn</u>

Figuer S1 SEM image of (a) $Fe_{0.95}S_{1.05}$ (b) $Fe_{0.9}Ni_{0.05}S_{1.05}$ (c) $Fe_{0.85}Ni_{0.1}S_{1.05}$ (d) $Fe_{0.75}Ni_{0.2}S_{1.05}$.

Figures S2 XRD pattern of Fe_{0.75}Ni_{0.2}S_{1.05}.

Figure S3 Nitrogen isotherm and pore size distribution of (a) $Fe_{0.95}S_{1.05}$ and (b) $Fe_{0.8}Ni_{0.15}S_{1.05}$ catalysts

Figure S4 SEM images of the $Fe_{0.8}Ni_{0.15}S_{1.05}$ products synthesized at various reaction temperatures, (a) 150 °C, (b) 180 °C, (c) 210 °C for 16 h.

Figure S5 TEM images of as-prepared products obtained via hydrothermal reaction after (a) 1 h, (b) 5 h, (c) 10 h and (d) 15 h

Figuer S6 Fe 2p and high-resolution XPS of $Fe_{0.8}Ni_{0.15}S_{1.05}$ catalyst and $Fe_{0.95}S_{1.05}$.

Figuer S7 *E*-*t* curves of $Fe_{0.8}Ni_{0.15}S_{1.05}$ at a potential of 1.47 V for 10 h.

Figure S8 The Faradaic efficiency of $Fe_{0.8}Ni_{0.15}S_{1.05}$ for OER. Electrocatalytic Faradaic efficiencies of OER over $Fe_{0.8}Ni_{0.15}S_{1.05}$ at a current density of 10 mA·cm⁻² measured for 60 min.

Figuer S9 CV curves in a potential window of 200–300 mV of (a) $Fe_{0.75}Ni_{0.20}S_{1.05}$, (b) $Fe_{0.8}Ni_{0.15}S_{1.05}$, (c) $Fe_{0.85}Ni_{0.1}S_{1.05}$ and (d) $Fe_{0.9}Ni_{0.05}S_{1.05}$ electrode.

Figure S10 (a) Ni 2p, (b) Fe 2p and (c) S 2p high-resolution XPS of Fe_{0.8}Ni_{0.15}S_{1.05} catalyst after OER test.

Figure S11 TEM images of Fe_{0.8}Ni_{0.15}S_{1.05} catalyst after OER test.

Figure S12 The Faradaic efficiency of $Fe_{0.8}Ni_{0.15}S_{1.05}$ for HER. Electrocatalytic Faradaic efficiencies of HER over $Fe_{0.8}Ni_{0.15}S_{1.05}$ at a current density of 10 mA·cm⁻² measured for 60 min.

RHE calibration

In all electrochemical tests, we use Hg/HgO electrode as the reference electrode. The calibration was performed using a Platinum wire as the working electrode in 1 M KOH solutions under H₂-saturated condition. The CV curves were test in 1.0 mol/L (M) KOH at a scan rate of 1 mV/s. The average value of the two potentials when the current crosses zero is used as the thermodynamic potential of the hydrogen electrode reaction.

 $E_{RHE} = E_{Hg/Hg0} + 0.928$

Table S1

	Fe	Ni	S
lin bk	< 0.00011	< -0.00059	<-0.00639
$Fe_{0.95}S_{1.05}$	1.2666	< -0.00077	1.4132
$Fe_{0.9}Ni_{0.05}S_{1.05}$	1.2131	0.0711	1.4666
$Fe_{0.85}Ni_{0.1}S_{1.05}$	1.1343	0.1346	1.4936
$Fe_{0.8}Ni_{0.15}S_{1.05}$	1.0785	0.2113	1.4864
$Fe_{0.75}Ni_{0.2}S_{1.05}$	1.0132	0.2438	1.4568

ICP results for $Fe_{0.95-x}Ni_xS_{1.05}$ catalysts.

Table S2

The $R_{\it ct}$ value of $Fe_{0.95\text{-}x}Ni_xS_{1.05}$ catalysts.

Catalysts	$R_{ct}\left(\Omega ight)$
Fe _{0.95} S _{1.05}	22.5
$Fe_{0.9}Ni_{0.05}S_{1.05}$	4.593
$Fe_{0.85}Ni_{0.1}S_{1.05}$	5.293
$Fe_{0.8}Ni_{0.15}S_{1.05}$	1.553
$Fe_{0.75}Ni_{0.2}S_{1.05}$	3.909

References

1. Y. Liu, S. Yin and P. K. Shen, ACS Applied Materials & Interfaces, 2018, 10, 23131-23139.

2. P. Ganesan, A. Sivanantham and S. Shanmugam, *Journal of Materials Chemistry A*, 2016, 4, 16394-16402

3. P. Ma, S. Luo, Y. Luo, X. Huang, M. Yang, Z. Zhao, F. Yuan, M. Chen and J. Ma, *Journal of Colloid and Interface Science*, 2020, **574**, 241-250

4. W. Zhu, X. Yue, W. Zhang, S. Yu, Y. Zhang, J. Wang, J. Wang, *Chemical Communications*, 2016, **52**,1486-1489.

5. S. Chen, Z. Kang, X. Zhang, J. Xie, H. Wang, W. Shao, X. Zheng, W. Yan, B. Pan and Y. Xie, *ACS Central Science*, 2017, **3**, 1221-1227.

6. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier and H. Dai, *Nature Materials*, 2011, **10**, 780-786.