High Performance of In-situ Annealed Partial Pressurized Pulsed Laser Deposited (PLD) WO₃ & V₂O₅ Thin Film Electrodes for Flexible all Solid State Supercapbatteries

Ramasamy Velmurugan^{a,b}, Palaniappan Alagammai^a, Mani Ulaganathan^{a,b,*}, Balasubramanian Subramanian^{a,b,*}

^aCSIR- Central Electrochemical Research Institute, Karaikudi- 630 003, Tamil Nadu, India.
^bAcademy of Scientific and Innovative Research (AcSIR), (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh- 201 002, India.

Experimental Section:

All the films were prepared using PLD process; the experimental conditions used for the thin film preparation are listed in Table S1.

Table S	51: Exp	erimenta	l parameters	of PLD
---------	---------	----------	--------------	--------

Experimental parameter	value
Wavelength of KrF Eximer	248 nm
Laser Eximer Energy	400 mJ
Pulse reprate rate	5 Hz
Pulse duration	10 ns
Target dimensions	2 inches \times 5 mm
Chamber pressure	2×10^{-6} Torr
Film thickness	1 to 1.5 μm
Deposition temperature	RT-650 °C

Capacitance Calculations:

The Areal capacitances of the three electrodes configuration was estimated from CV and GCD curves, respectively

$$C_{S}(Areal) = \frac{\oint i \, dV}{2A \partial \Delta V} \left(\frac{F}{cm^{2}}\right) \qquad (1)$$

Here $\vartheta \to Scan Rate$, $A \to active area of the electrode, \Delta V - Potential window$ $\oint i \, dV - Area under the CV curve,$ $C_{DS}(Areal) = \frac{J_p \Delta t}{\Delta V} \left(\frac{F}{cm^2}\right) \qquad (2)$ Here $J_p \to \frac{i}{A}$ Current density $\left(\frac{A}{cm^2}\right)$

The Volumetric capacitances was calculated from CV and GCD curves along with the following equation

$$C_{Vol} = \frac{\oint i \, dV}{2V_{vol} \, \vartheta \Delta V} \left(\frac{F}{cm^3}\right) \tag{3}$$

 $J_p \rightarrow \frac{i}{V_{vol}}$ Current density $\left(\frac{A}{cm^3}\right)$

The specific area and volumetric capacitance of the symmetric devices were calculated from CV and GCD curves by using following equation

$$C_{spec} = 2C_S \tag{5}$$

The specific area and volumetric capacitances of the HSC device were investigated from GCD curves by using following relation

$$C_{spec} = 4C_S \tag{6}$$

To construct an HSC, the charges stored on the electrodes are balanced using the below relation, The calculated specific capacitances (C) of single electrode, the voltage range for the HSC device by using GCD method (ΔV), and the active mass of the thin film electrodes (m), succeeding the equation:

m+ mass of the positive electrode, m- mass of the negative electrodes; Cs- specific capacitance of the negative electrode and Cs+ specific capacitance of the positive electrode obtained from the three electrode testing's.

The coulombic efficiency of the each GCD curve were calculated following the equation

$$\eta(\%) = \frac{\Delta t_d}{\Delta t_c} \times 100 \tag{8}$$

Here $\Delta t_d \rightarrow discharging \ time, \Delta t_c \rightarrow charging \ time$

The volumetric specific energy density (E) and volumetric specific power density (P) alongside symmetric and HSC devices were estimated with the following equations

$$P = \frac{E}{\Delta t_d} \times 3600 \qquad \left(\frac{mW}{cm^3}\right) \qquad (10)$$

Figure S1: (a) XPS survey spectra of WO₃ thin film.

Figure S2: FESEM image of WO₃ annealed sample at different magnification coated on Nifoam substrate: a) x 500; b) X 5k (inset view –EDAX spectrum) ; c) X 175k.

Figure S3: (a) XPS survey spectra of V_2O_5 thin film

Figure S4: FESEM image of V_2O_5 annealed sample at different magnification coated on Nifoam substrate: a) x 500; b) X 5k (inset view –EDAX spectrum); c) X 175k.

Figure S5; TEM EDAX spectrum of V₂O₅ thin film as prepared

Figure S6: V_2O_5 thin film as prepared sample; (a-c) TEM images of the low and high magnifications; d) HR-TEM images with lattice planes;

Figure S7; a-b) AFM 2D and 3D topographic images of V_2O_5 thin film; (c-d) AFM 2D and 3D topographic images of WO₃ thin film;

Figure S8; a) CV curve comparisons of the different WO₃ thin film electrodes annealed at different temperature in a three electrode configuration at scan rate of 50 mV. s⁻¹. ; (b) CV curves of the WO₃ thin film electrode different scan rates annealed at 650 °C tested at three electrode systems; (c) GCD profile curves of the sample annealed at 650 °C at different current density tested at three electrode systems; (d) Discharge capacitance vs. current density.

Figure S9: a) CV curve of as prepared and annealed at 500 °C V₂O₅ coated carbon paper in a three electrode configuration at scan rate of 100 mV.s⁻¹;((b) CV curves of the V₂O₅thin film electrode different scan rates annealed at 500 °C tested in a three electrode systems; (b) GCD curves of the sample annealed at 500 °C at different current density tested at three electrode systems; (b) Specific capacity vs potential of the sample annealed at 500 °C

Figure S10; (a)CV curves performance of the WO₃ symmetric device at high scan rates ;(b) CV curves of WO₃ symmetric two devices in series; (c) GDC profile of WO₃ symmetric device stability curve for every 500th cycle up to 18k are compared.

Figure S11 : (a)CV curves performance of the V_2O_5 symmetric device at high scan rates ;(b) CV curves of two devices in parallel at scan rate 50 mVs⁻¹;(c) GCD profile comparisons of the V_2O_5 symmetric device stability every 1k cycles; (d) Self-discharge study of the V_2O_5 symmetric supercapacitor.

Figure S12; a) CV curve combination of positive and negative electrodes in a three electrode configurations at scan rate of 50 mV.s⁻¹; b) CV curve of HSC device at scan rate of 50 mV s⁻¹.

Figure S13; a) CV curves of solid state HSC device at high scan rates; (b) specific capacity curve at different current density; (c) GCD profile comparison of an HSC device at different cycle range.

Figure S14; EIS analysis comparisons of the pristine solid state HSC device and after fitting EIS curve with equivalent circuit.

Element	Value	Error	Error%
R1	1	N/A	N/A
CPE1-T	0.21	N/A	N/A
CPE1-P	0.88	N/A	N/A
CPE2-T	0.03	N/A	N/A
CPE2-P	0.63	N/A	N/A
W1-R	0.627	N/A	N/A
W1-T	0.7	N/A	N/A
W1-P	0.5	N/A	N/A

Table S2: EIS model fitting parameters

Figure S15; (a) GCD characteristics of solid state HSC device in various bending positions such as 0 to 180 deg; (b) capacitance retention curve at different bending angles such as 0 to 180 deg.

Figure S16; :(a)GCD profile comparison solid state HSC devices in series combination at a current density of 5 mA.cm⁻²; (b)GCD profile comparison solid state HSC devices in parallel combination at a current density of 2 mA.cm⁻²; (c) EIS comparison solid state HSC devices in series combination; (d) EIS comparison solid state HSC devices in parallel combination.

Reported Materials	Method	Electrolyte	Voltage Window [V]	Specific capacitance	Ref	
WO ₃	SILAR	1 M Na ₂ SO ₄	0.8V	266 Fg ⁻¹	[1]	
WO ₃	Wet chemical method	1 M H ₂ SO ₄	-0.2 to -0.7	246 F g ⁻¹	[2]	
WO ₃ Polymorphs	Hydrothermal	1MH ₂ SO ₄	-0.6 to 0.2V	377.5 Fg ⁻¹	[3]	
WO ₃	RF Magnetron sputtering	1M LiClO ₄ + PC	-0.9 and 0.5 V	228 F g ⁻¹	[4]	
Pd-WO ₃	Hydrothermal	1MNa ₂ SO ₄	-0.7 to 0.1V	33.3 Fg^{-1}	[5]	
WO ₃	Electrodeposition	$1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	-0.5 to 0.2 V	138.2 F g ⁻¹	[6]	
WO ₃ @W ₁₈ O 49-CNF	Electro-spinning	4 M KOH	-0.85-0.05 V	333.92 F g ⁻¹	[7]	
MWCNTs- WO ₃	ZnNPs	1MH ₂ SO ₄	2.0 V	$103 \mathrm{Fg^{-1}}$	[8]	
WO ₃	PLD	2М КОН	-0.2 to 0.7V	145 F g ⁻¹	This work	

Table S3: The electrochemical stability of the WO_3 thin film based supercapacitor comparison study with the reported literature

Table S4: The electrochemical stability of the V_2O_5 thin film based supercapacitor comparison study with the reported literature

Reported Material /Symmetric Devices	Method	Electrolyte	Potential Window [V]	Specific capacitance	Ref
V ₂ O ₅ /MWC NT	Hydrothermal Method	H ₂ SO ₄ -HNO ₃	-0.2 to 0.8 v	410 F g ⁻¹	[9]
V ₂ O ₅ /PPY	Slurry	5 M LiNO ₃ 0 to 1 V		448 F g ⁻¹	[10]
V ₂ O ₅ / Graphene	Atomic Layer Deposition	1MNa ₂ SO ₄	0 to 1 V	189 F g ⁻¹	[11]
V ₂ O ₅	Thermal treatment	0.5 M K ₂ SO ₄	-0.1 to 0.8 V	417 F g ⁻¹	[12]
V ₂ O ₅	Hydrothermal reduction	1 M LiClO ₄	-0.3 to 1.1V	405 F g ⁻¹	[13]
V ₂ O ₅	Spray pyrolysis	1MKCl	-1.35 to 0.05V	307.3 F g ⁻¹	[14]
V ₂ O ₅	Hydrothermal	1MNa ₂ SO ₄	0 to 0.8V	177 Fg ⁻¹	[15]
Graphene /V ₂ O ₅	Hydrothermal	1MNa ₂ SO ₄	0 to 0.6 V	457 Fg ⁻¹	[16]
V ₂ O ₅	Thermal evaporation	PVA-KOH	0 to1V	10 Fg ⁻¹	[17]
V ₂ O ₅	PLD	2М КОН	0 to 0.6 V	433 Fg ⁻¹	This work

Table	S5:	State	of	art	of	the	thin	film	based	electrode	materials	and	their
perfor	mano	ce cha	ract	erist	tics	with	n othe	er met	al oxid	e symmetr	ic superca	pacit	or

Reported SC Devices	Method	Electrolyte	Potential Window	Specific Canacitance	Energy Density [Wh/kg]	Power Density [kW/ kg]	Stability [Cycles]	Retention	Ref
MnO ₂	Pulsed Electrochemical Deposition	BMIBF4	1V	39.68 mF/ cm ²					[18]
α-ΜοΟ3	Hydrothermal	1 M H ₂ SO ₄	0.26– 0.43 V	64 μF/ cm ²			720		[19]
MoO ₂	Magnetron Sputtering	0.5 M Li ₂ SO ₄	-0.8 to 0.2V	31 mF/ cm ²			12000	89%	[20]
(Fe,Cr) ₂ O ₃	Thermal Oxidization	2 М КОН	0 to -1 V	45.92 mF/cm ²	0.57 mWh/ cm ²	200 mW/ cm ²	10000	90%	[21]
NiCo ₂ O ₄ Symmetric	Electrospinning	PVA-KOH	1 V	42.6 mF/cm ²			5000	100%	[22]
MnO ₂	Electrodeposition	1.0 M Na ₂ SO ₄	0.8 V	52.55 mF/ cm ²			5000	90%	[23]
NiCo ₂ O ₄	Sol–Gel	2МКОН	-0.2 to 0.5 V	40.6 mF/cm ²			10,000	(96.5%	[24]
TiO ₂	Atomic Layer Deposition	PVA/ H ₃ PO ₄	0.8 V	8.6 mF/cm ²			5000	95%	[25]
WO ₃	PLD	РVА-КОН	0 to - 0.8V	5.31mF/cm ² 49.4 F/cm ³	1.87 mWh/ cm ³	0.54 W/ cm ³	18000	88.8 %	This work
V ₂ O ₅	PLD	РVА-КОН	0 to 1.0V	6.5 mF/cm ² 44.21 F/cm ³	1.71 mWh/ cm ³	0.68 W/ cm ³	10000	90.2 %	This work

Reported ASC Devices	Potential Window [V]	Volumetric Capacitance	Energy Density	Power Density	Stability [Cycles]	Retention	Ref
α-MnO ₂ NW/ Fe ₂ O ₃ NT	1.6V	1.5F cm ⁻³	0.55 mW h cm ⁻³	139.1 mW/cm ³	6000	90%	[26]
CNT–WO ₃	1.4 V	2.6 F cm ⁻³	0.59 mW h cm ⁻³	30.6 mW/cm ³	50 000	75.8%	[27]
V ₂ O ₅ /MWCNT	1.8 V	31 F cm ⁻³	2.1mW h cm ⁻³	1.5 W/cm ³	5000	100%	[28]
α-Fe ₂ O ₃ /MnO _x NR	1 V	1.28 F cm ⁻³	0.64 mW h cm ⁻³	155 mW/cm ³	4000	78%	[29]
Co ₉ S ₈ NR// RuO ₂ NS	1.6 V	4.3 F cm ⁻³	1.21 mW h cm ⁻³	13.29 W/cm ³	2000	90%	[30]
NiCo ₂ O ₄ NS	1V	10.3 F cm ⁻³	1.44 mW h cm ⁻³	17W/cm ³	500	92%	[31]
RuO ₂ -WO ₃	1.6 V	3.52 F cm ⁻³	1.25 mW h cm ⁻³	40 mW/cm ³	6500	100%	[32]
WO ₃ /MnO ₂	1.8 V	7.22 F cm ⁻³	3.25 mW h cm ⁻³	411 mW/cm ³	6000	89%	[33]
Fe ₂ O ₃ /MnO ₂	1.2 V	$60 \mathrm{F} \cdot \mathrm{cm}^{-3}$	12 mWh cm ^{-3}	14.8 Wcm ⁻³	2,500	80%	[34]
WO ₃ / G/PT	1.6	167.6 mF cm ⁻³	60 μWh cm ⁻³	2320 μWcm ⁻³	3000	99%	[35]
rGO/H-Fe ₂ O ₃	1.5	37.88 mF cm ⁻²	0.14 mW h cm ⁻³	12.30 W cm ⁻³	10 000	97%	[36]
WO ₃ -V ₂ O ₅	1.5 V	40.28 Fcm ⁻³	12.6 mW h cm ⁻³	1.42 W cm ⁻³	50000	95%	This work

Table S6: HSC device comparative study of electrochemical performance of volumetric capacitance with the reported literature.

References:

- [1]. VaibhavLokhande, AbhishekLokhande, GonNamkoong, Jin HyeokKim, TaeksooJi, Chargestoragein; *Results in Physics 12 (2019) 2012–2020*
- P. Periasamy, T. Krishnakumar, M. Sathish, Murthy Chavali, Prem Felix Siril, V. P. Devarajan; *Materials in Electronics (2018) 29:6157–6166*
- [3]. AkbarI. Inamdar, Jongmin Kim, Yongcheol Jo, Hyeonseok Woo, Sangeun Cho, Sambhaji M.Pawar, Hyungsang Kim, Hyunsi kIm; Solar Energy Materials & Solar Cells 166 (2017) 78–85
- [4]. ShobhnathP.Gupta, VandanaB.PatilNilesh, L.Tarwal, ShekharD.Bhame, SureshW.Gosavi ,ImtiazS.Mulla , DattatrayJ.Late , SharadS.Suryavanshi ,PravinS.Walke ; *Materials Chemistry and Physics 225 (2019) 192–199*
- [5]. Shobhnath P.Gupta, Vandana B.Patil Nilesh, L.Tarwal, Shekhar D.Bhame, Suresh W.Gosavi ,Imtiaz S.Mulla ,Dattatray J.Late , Sharad S.Suryavanshi ,Pravin S.Walke Materials Chemistry and Physics 225 (2019) 192–199
- [6]. Liuxue Shen, Lianhuan Du, Shaozao Tan, ZhigangZang, Chuanxi Zhao, and Wenjie Mai ; *Chem. Commun.*,2016, 52, 6296
- [7]. Masoud Faraji, Roya Khalilzadeh Soltanahmadi, Hossein Mohammadzadeh Aydisheh Borhan Mostafavi Bavan ; *Ionics 26, 2021–2029(2020)*
- [8]. Masoud Faraji, Roya Khalilzadeh Soltanahmadi, Hossein Mohammadzadeh Aydisheh Borhan Mostafavi Bavan *Ionics 26, 3003–3013(2020)*
- [9]. Balakrishnan Saravanakumar, Kamatchi Kamaraj Purushothaman and Gopalan Muralidharan ; *RSC Adv., 2014, 4, 37437*
- [10]. Tao Qian, Na Xu, JinqiuZhou, Tingzhou Yang, Xuejun Liu, XiaoweiShen, Jiaqi Liangand Chenglin Yan; J. Mater. Chem. A, 2015, 3,488
- [11]. Seung-Mo Lee, Yong-Jin Park, Do Van Lam, Jae-Hyun Kim, Kyubock Lee; *Applied Surface Science 512 (2020) 145626*

- [12]. R.B.Rakhi, D.H.Nagaraju, Pierre Beaujuge, H.N.Alshareef;, ElectrochimicaActaj.electacta.2016.10.109
- [13]. Rahul S. Ingole, B.J. Lokhande; J Mater Sci: Mater Electron (2016) 27:1363–1369
- [14]. RamuManikandan, Chellan Justin Raj, Murugesan Rajesh, ByungChul Kim, Seungil Park, Kook Hyun Yu; *Adv. Mater. Interfaces 2018, 5, 1800041*
- [15]. Tao Peng, Jun Wang, Qi Liu, Jingyuan Liu and Peng Wangl; CrystEngComm c4ce02305f
- [16]. Yaju Zhou, Linlin Sun, Dongyao Wu, Xin Li, Jinze Li, Pengwei Huo, Huiqin Wang, Yongsheng Yan; *Journal of Alloys and Compounds 817, 2020, 152707*
- [17]. RamasamyVelmurugan, JayaramanPremkumar, RagupathyPitchai, Mani Ulaganathan Balasubramanian Subramanian ; *Acssuschemeng. 2019, 7, 15, 13115–13126*
- [18]. AmrObeidat, Mohammad A. Gharaibeh; INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH
- [19]. Beatriz Mendoza-Sánchez, ThierryBrousse, ClaudiaRamirez-Castro, ValeriaNicolosi, PatrickS. Grant; *ElectrochimicaActa 91 (2013) 253–26*
- [20]. Can Liu, Zhengcao Li, and Zhengjun Zhang;; Science and Technology of Advanced Materials, Sci. Technol. Adv. Mater. 14 065005
- [21]. Prashant R. Deshmukh, YoungkuSohn, WeonGyu Shin; ACS Sustainable Chem. Eng. 2018, 6, 1, 300–310
- [22]. Yuanfei Ai, Jing Ma and Zhiming M Wang; *Earth and Environmental Science 170* (2018) 032095
- [23]. Soomin Park, Inho Nam, Gil-Pyo Kim, Jeong Woo Han, JongheopYi; ACS Appl. Mater. Interfaces 2013, 5, 9908–9912
- [24]. Yang Liu, Ni Wang, Chengtao Yang, Wencheng Hu, Ceramics International42(2016)11411–11416
- [25]. Kuan Hu, Chao Zheng, Miao An, Xiaohui Ma and Lu Wang; J. Mater. Chem. A, 2018, 6, 8047–8052
- [26]. Peihua Yang, Yong Ding, Ziyin Lin, Zhongwei Chen,YuzhiLi,PengfeiQiang,MasoodEbrahimi, WenjieMai,Ching Ping Wong,Zhong Lin Wang; *Nano Lett* 2014, 14, 2, 731–736.

- [27]. Peng Sun, Zewei Deng, PeihuaYang, Xiang Yu, Yanli Chen, Zhimin Liang, HuiMeng, Weiguang Xie, Shaozao Tan and Wenjie Mai; J. Mater. Chem. A, 2015, 3,12076
- [28]. Li Hua, Zhongyuan Ma, Peipei Shi, Li Li, Kun Rui, Jinyuan Zhou, Xiao Huang, Xiang Liu, Jixin Zhu, Gengzhi Sun and Wei Huang; J. Mater. Chem. A, 2017, 5,2483.
- [29]. DebasishSarkar, Somnath Pal, SumanMandal, Ashok Shukla, and D. D. Sarma; Journal of The Electrochemical Society, 164 (12) A2707-A2715
- [30]. Jing Xu, Qiufan Wang,Xiaowei Wang, Qingyi Xiang, Bo Liang, Di Chen, GuozhenShen⁵; ACS Nano 5453–5462
- [31]. QiufanWang, Xianfu;Wang,Jing, Xu,XiaOuyang,XiaojuanHou, DiChen, RongmingWang, GuozhenShen; *j.nanoen.2014.05.014*
- [32]. Su HyeonJi, NileshR.Chodankar, Do-HeyoungKim; *ElectrochimicaActa 325 (2019)* 134879
- [33]. DebasishSarkar, Soham Mukherjee, Somnath Pal, D. D. Sarma and Ashok Shukla; *J. Electrochem. Soc.* **165** A2108.
- [34]. Zehua Liu, Xiaocong Tian, Xu Xu, Liang He, Mengyu Yan, Chunhua Han, Yan Li, Wei Yang, Liqiang Mai ; *Nano Research,* 10, 2471–2481(2017)
- [35]. Li-Na Jin,PingLiu,ChunJin,Jia –Nan Zhang, Shao-Wei Bian; *Journal of Colloid and Interface Science*, 10, 15, 1-11
- [36]. QiyingLv, Kai Chi, Yan Zhang , Fei Xiao , Junwu Xiao, Shuai Wang and Kian Ping Loh ; ; J. Mater. Chem. A, 2017, 5, 2759–2767