Supporting Information

Boosting interface reaction activity and kinetics of cobalt molybdate by phosphating treatment for aqueous zinc-ion batteries with high energy density and long cycle life

Yuenian Shen¹, Zhihao Li¹, Zhe Cui¹, Ke Zhang³, Rujia Zou¹, Fang Yang^{3*}, and Kaibing Xu^{1, 2*a}

¹ State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China

² Research Center for Analysis and Measurement, Donghua University, Shanghai,
201620, China

³ College of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China

E-mail: yfang@sues.edu.cn (F. Yang), xukaibing@dhu.edu.cn (K. Xu)

Calculation principles:

The specific capacity (mA h g⁻¹) is calculated according to the equation: $C = i \times \Delta t/m$, where i (mA) is the applied discharging current, Δt (h) is the discharging time, and m (g) is the mass loading of active material. The energy density (W h kg⁻¹) and power

density (W kg⁻¹) are estimated based on the formulas: $E = {}_{0}^{\Delta t} \frac{V \times i}{m} dt$ and P = E/t, where V (V), i (mA), Δt (h) and m (g) represent the working voltage, discharging current, discharging time of the assembled batteries, and mass loading of active material on the cathode, respectively.

Fig. S1 SEM images of CoMoO₄ samples after phosphating treatment at (a) 300 °C, (b) 350 °C and (c) 450 °C for 2h. SEM images of CoMoO₄ samples after phosphating treatment at 400 °C for (d) 0.5 h, (e) 1 h and (f) 5 h.

Fig. S2 N_2 adsorption/desorption isotherm and pore-size distribution curve (inset) of CoMoO₄ sample.

Fig. S3 CV curves of CoMoO₄ electrode at different scan rates.

Fig. S4 The comparison of CV curves for $CoMoO_4$ and $P-CoMoO_4$ electrodes at 10 mV s⁻¹.

Fig. S5 Discharge curves of CoMoO₄ electrode at different current densities.

Fig. S6 Nyquist plots of CoMoO₄ and P-CoMoO₄ electrodes.

Fig. S7 Discharge curves of CoMoO₄ electrodes after phosphating treatment at (a) 300 °C, (b) 350 °C and (c) 450 °C for 2h. Discharge curves of CoMoO₄ electrodes after phosphating treatment at 400 °C for (d) 0.5 h, (e) 1 h and (f) 5 h.

Fig. S8 Relationship of specific capacity versus P atomic percent after phosphating treatment (a) at different temperature for 2h, and (b) at 400 °C for different holding time.

Fig. S9 (a) CV curves of $CoMoO_4//Zn$ battery at different scan rates. (b) GCD curves of $CoMoO_4//Zn$ battery at different current densities.

Fig. S10 Nyquist plots of $CoMoO_4//Zn$ and P-CoMoO₄//Zn batteries.