Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

Fe-based non-noble metal catalysts with dual active sites of nanosized metal carbide and single-atomic species for oxygen reduction reaction

Gil-Seong Kang^{a,b}, Jue-Hyuk Jang^c, Su-Young Son^d, Cheol-Ho Lee^a, Youn-Ki Lee^a, Doh. C Lee^b, Sun

g Jong Yoo^c, Sungho Lee^{a,*}, and Han-Ik Joh^{d,*}

^aCarbon Composite Materials Research Center, Korea Institute of Science and Technology (KIST), 92

Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do 55324, Republic of Korea

^bDepartment of Chemical and Biomolecular Engineering, KAIST Institute for the Nanocentury, Korea

Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon

34141, Republic of Korea

^cCenter for Hydrogen Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul,

02792, Republic of Korea

^dDepartment of Energy Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul

05029, Republic of Korea

*Corresponding authors, E-mail: Han-Ik Joh (hijoh@konkuk.ac.kr) and Sungho Lee

(sunghol@kist.re.kr)

Fig. S1. Raman spectrum of graphene oxide.

Fig. S2. (a-b) Photographs of the dispersibility test and (c) absorption spectra of the supernatants of the mixtures.

Fig. S3. XRD diffractogram of Fe₃C-NP/FeN_x@Gr-600.

Fig. S4. XRD of Fe₃C/FeN_x@Gr samples prepared at different pyrolysis temperatures.

Fig. S5. Isotherms of $Fe_3C/FeN_x@Gr$ samples prepared at different pyrolysis temperatures.

Fig. S6. TEM images of Fe₃C/FeN_x@Gr-900.

Fig. S7. ORR polarization curves of (a) $Fe_3C/FeN_x@Gr-900$ and (b) $Fe_3C-NP/FeN_x@Gr-900$ with the addition of 0.01 M NaCN.

Fig. S8. Cyclic voltammogram of Fe_3C-NP/FeN_x -900 before and after 10,000 cycles.

Fig. S9. (a) HR-TEM, (b) HAADF-STEM images and (c) corresponding EDX spectra of the Fe_3C-NP/FeN_x-900 catalyst after 10,000 cycles.

Fig. S10. Alkaline membrane fuel cell performance durability tests at a constant voltage of 0.6 V for the MEAs with Fe₃C-NP/FeN_x@Gr-900 and Pt/C as cathode catalysts.

Table S1. (a) K_a values of hydrated Zn and Fe species, (b) pH values of ZnCl₂ and FeCl₃ in deionized water

(a)

Free Ion	Hydrated Ion	K _a
Zn ²⁺	$Zn(H_2O)_6^{2+}(aq.)$	$1 \ge 10^{-9}$
Fe ³⁺	$Fe(H2O)_{6}^{3+}(aq.)$	$6 \ge 10^{-3}$

- Reaction in water

 $\mathrm{FeCl}_3\mathrm{+H_2O} \xrightarrow{} \mathrm{Fe(H_2O)_6^{3+}+3Cl^-}$

 $Fe(H_2O)_6^{3+} \rightarrow Fe(H_2O)_5(OH)^{2+} + H_3O^+$

(b)

Sample	рН
ZnCl ₂	5.86
FeCl ₃	2.84
H ₂ O	6.77

 Fe^{3+} is more acidic than Zn^{2+} , because the K_a value of Fe^{3+} is higher than that of Zn^{2+} .

Therefore, Fe^{3+} ions can more strongly bind to the surface of negatively charged graphene oxide than Zn^{2+} ions.

	C (at.%)	N (at.%)	O (at.%)	Fe (at.%)	Zn (at.%)
Fe ₃ C/FeN _x @Gr-700	70.9	9.2	19.1	0.8	-
Fe ₃ C/FeN _x @Gr-800	77.5	10.3	11.8	0.4	-
Fe ₃ C/FeN _x @Gr-900	81.6	8.7	9.3	0.4	-
Fe ₃ C/FeN _x @Gr-1000	94.6	1.9	3.1	0.4	-

Table S2. Atomic contents of (a) $Fe_3C/FeN_x@Gr$ and (b) $Fe_3C-NP/FeN_x@Gr$ samples

(a)

(b)

	C (at.%)	N (at.%)	O (at.%)	Fe (at.%)	Zn (at.%)
Fe ₃ C-NP/FeN _x @Gr-700	76.5	11.9	10	0.4	1.2
Fe ₃ C-NP/FeN _x @Gr-800	84.2	7.7	7.4	0.5	0.2
Fe ₃ C-NP/FeN _x @Gr-900	84.8	7.9	6.7	0.5	0.1
Fe ₃ C-NP/FeN _x @Gr-1000	96	1.5	2.1	0.4	0

Table S3. BET surface area (SA) (micropore SA and external SA) and pore volume of (a) $Fe_3C/FeN_x@Gr and$ (b) $Fe_3C-NP/FeN_x@Gr samples$

	Fe ₃ C/FeN _x @Gr -700	Fe ₃ C/FeN _x @Gr -800	Fe ₃ C/FeN _x @Gr -900	Fe ₃ C/FeN _x @Gr -1000
BET area (m ² /g)	19.9	15	68.4	59.7
Micro SA (m ² /g)	9.5	6	21.7	1
External SA (m ² /g)	10.4	9	46.7	58.7
Pore volume at 0.9 P/Po (m ³ /g)	0.022	0.015	0.289	0.246

(a)

(b)

	Fe ₃ C- NP/FeN _x @Gr- 700	Fe ₃ C- NP/FeN _x @Gr- 800	Fe ₃ C- NP/FeN _x @Gr- 900	Fe ₃ C- NP/FeN _x @Gr- 1000
BET SA (m²/g)	20.7	11.7	235.3	374.8
Micro SA (m ² /g)	5.8	-	24.8	11.7
External SA (m²/g)	14.9	11.7	210.5	363.1
Pore volume at 0.9 P/Po (m ³ /g)	0.031	0.016	1.21	1.68

Catalyst	<i>P</i> _{max} (mW cm ⁻²)	J _{max} (mA cm ⁻²)	Cathode loading (mg cm ⁻²)	Iron contents	Ref.
Our catalyst	367	1043	3.0	5.2 wt.% (ICP-AAS)	
Fe carbide+Fe-	243	~680	2.0	2.0 wt.% (ICP-MS)	52
Fe ₃ C/Fe-N _x	160	~420	2.0	1.5 at.% (XPS)	51
Fe/Fe ₃ C	96	~400	2.0	13.88 wt.% (SEM-EDX)	53
Fe-N, Fe ₃ C, Fe ₂ O ₃	50	~280	2.0	41.26 mg L ⁻¹ (ICP-AES)	54
Fe ₃ C	125	~460	3.0	1.48 at.% (XPS)	55
Fe-N _x /CNT	635	~2100	1.5	0.8 wt.% (ICP-OES)	30
Fe-N _x	140	~660	3.5	0.22 at.% (XPS)	56
FeN _x /FeS _x	65	~250	2.0	1.15 wt.%	57

Table S4. Comparison of the AEMFC performances of Fe-based catalysts

				(EDAX)	
Fe/Co-N	35	~110	2.5	3.8 wt.%	58
				(Fe), 3.6 wt%	
				(Co) (EDAX)	
Fe-Fe ₂ O ₃	54	~200	3.0	48.69 wt.%	59
				(XPS)	