# **Electronic Supplementary Information**

# MoFe Nitrogenase-Mimic Electrocatalyst for Nitrogen Fixation with High Faradaic efficiency

Jie Liu, Wenhan Kong, Zhaoyong Jin, Yaqian Han, Jie Sun, Liangyu Ma, Yusheng Niu and Yuanhong Xu\*

College of Materials Science and Engineering, Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, Shandong, China

E-mail: yhxu@qdu.edu.cn

#### **Experimental section**

## Preparation of MoO<sub>2</sub>/FeS<sub>2</sub>/GA:

First, GO solution was prepared by dispersing 40 mg of GO powder in 20 mL of deionized water by ultrasonication. Next, 0.25 mmol Na<sub>2</sub>MoO<sub>4</sub>, 1.75 mmol FeCl<sub>3</sub> and 2.25 mmol Na<sub>2</sub>S were added to the above solution. Then, the mixture was vigorously stirred at room temperature for 1 h. The whole solution was transferred into a 40 mL Teflon-lined stainless-steel autoclave, and placed in an electric oven at 180°C for 12 h. After that, the autoclave was cooled down to room temperature naturally. A 3D MoO<sub>2</sub>/FeS<sub>2</sub>/GA was formed by the hydrothermal reaction. The MoO<sub>2</sub>/FeS<sub>2</sub>/GA product was collected and freeze-dried for further application. As a comparison, GA, MoO<sub>2</sub>/GA and FeS<sub>2</sub>/GA were also prepared by a similar procedure.

**Preparation of GA-CP, MoO<sub>2</sub>/GA-CP, FeS<sub>2</sub>/GA-CP and MoO<sub>2</sub>/FeS<sub>2</sub>/GA-CP:** Carbon paper (CP) was cleaned via brief sonication with ethanol and water for several times. 5 mg sample and 20  $\mu$ L 5 wt% Nafion solution were dispersed in 960  $\mu$ L water/ethanol (V : V = 1 : 3) followed by 1-h sonication to form a homogeneous ink. 20  $\mu$ L ink was loaded onto a CP (1 × 1 cm<sup>2</sup>) and dried under ambient condition.

**Characterizations:** The XRD patterns were measured on a Bruker D2 PHASER diffractometer using Cu-K $\alpha$  radiation ( $\lambda = 0.1542$  nm). The XPS was carried out by Thermo Scientific Escalab 250Xi. The SEM images were obtained with a Hitachi SU8010 scanning electron microscope (Japan). The TEM and HRTEM images were measured using a JEOL JEM-2100F transmission electron microscope operated at 200 kV. The absorbance signals of the system spectra were all gained from a Mapada UV 6300 spectrophotometer (Shanghai, China).

**Electrochemical measurements:** All the electrochemical experiments were conducted on an electrochemical workstation (CHI 760E) using MoO<sub>2</sub>/FeS<sub>2</sub>/GA-CP (GA-CP, MoO<sub>2</sub>/GA-CP or FeS<sub>2</sub>/GA-CP), Ag/AgCl electrode (saturated KCl electrolyte) and Pt foil as the working, reference and counter electrodes, respectively. The electrochemical NRR tests were performed using an H-cell system that was isolated by Nafion 211 membrane. For NRR experiments, the potentiostatic test was carried out at different potentials (-0.45 to -0.2 V) in the N<sub>2</sub>-saturated 0.1 M HCl

solution (40 mL). High-pure  $N_2$  was successively introduced into the cathodic portion for 30 min before the measurement.

**Determination of NH<sub>3</sub>:** NH<sub>3</sub> concentration was detected by the indophenol blue method. In detail, 2 mL electrolyte was obtained from the cathodic chamber, and then 2 mL of 1 M NaOH solution (contains 5 wt% salicylic acid and 5 wt% sodium citrate) was added into this solution. Subsequently, 1 mL of 0.05 M sodium hypochlorite and 0.2 mL of sodium nitroferricyanide (1 wt%) were add into the above solution. After standing at room temperature for 2 h, the UV-vis absorption absorption spectrum was measured at a wavelength of 655 nm. The concentration-absorbance curves were calibrated using standard NH<sub>4</sub>Cl solution (0.1 M HCl solution as mother solution) with a serious of concentrations. The fitting curve (y = 0.449x + 0.0381,  $R^2 = 0.999$ ) shows good linear relation of absorbance value with NH<sub>3</sub> concentration by three times independent calibrations.

**Determination of N<sub>2</sub>H<sub>4</sub>:** The N<sub>2</sub>H<sub>4</sub> present in the electrolyte was determined by the method of Watt and Chrisp. The mixture of C<sub>9</sub>H<sub>11</sub>NO (5.99 g), HCl (30 mL), and C<sub>2</sub>H<sub>5</sub>OH (300 mL) was used as a color reagent. In detail, 5 mL electrolyte was removed from the electrochemical reaction vessel, and added into 5 mL above prepared color reagent and stirring 10 min at room temperature. Moreover, the absorbance of the resulting solution was measured at a wavelength of 460 nm. The concentration absorbance curves were calibrated using standard N<sub>2</sub>H<sub>4</sub> solution with a series of concentrations. The fitting curve (y = 0.522x + 0.064, R<sup>2</sup> = 0.999) shows good linear relation of absorbance value with N<sub>2</sub>H<sub>4</sub> concentration.

**Calculations of NH<sub>3</sub> yield and FE:** NH<sub>3</sub> yield was calculated using the following equation:

NH<sub>3</sub> yield =  $[NH_4^+] \times V/(m_{cat.} \times t)$ 

FE was calculated according to following equation:

 $FE = 3 \times F \times [NH_4^+] \times V/(17 \times Q)$ 

Where  $[NH_4^+]$  is the measured  $NH_4^+$  concentration; V is the volume of the cathodic reaction electrolyte; t is the potential applied time;  $m_{cat.}$  is the loaded quality of catalyst; F is the Faraday constant; and Q is the quantity of charge in Coulombs.

<sup>15</sup>N<sub>2</sub> isotope labeling experiments: An isotopic labeling experiment used <sup>15</sup>N<sub>2</sub> (99 atom % <sup>15</sup>N purchased from Qingdao Dehai Weiye Technology Co., Ltd. CAS: 29817-79-6) as the feed gas. After the electrolytic reaction for 24 h at -0.25 V, the obtained 40 mL electrolyte after NRR was concentrated to 4 mL. And then, the electrolyte was determined by <sup>1</sup>H nuclear magnetic resonance (NMR, 600 MHz). Similarly, the standard curves were calibrated using standard <sup>15</sup>NH<sub>4</sub>Cl solution at concentrations of 1 mM in 0.1 M HCl. All NMR measurements were carried out with water suppression and 4000 scans.



Fig. S1. (a) XRD pattern of GA  $_{\sim}$  MoO\_2/GA and FeS\_2/GA.



**Fig. S2.** The survey XPS spectra (a) and the narrow scan spectra of (b) Fe 2p, (c) Mo 3d, (d) S 2p, (e) C 1s and (f) O 1s of MoO<sub>2</sub>/FeS<sub>2</sub>/GA.



**Fig. S3.** (a) UV–vis absorption spectra of various  $NH_3$  concentrations after incubated for 2 h at room temperature. (b) Calibration curve used for calculation of  $NH_3$  concentrations. (error bar=SD, n=3).



Fig. S4. LSV curves of  $MoO_2/FeS_2/GA$ -CP in Ar- and  $N_2$ -saturated 0.1 M HCl.



Fig. S5. LSV curves of  $MoO_2/GA$ -CP and  $MoO_2/FeS_2/GA$ -CP in  $N_2$ -saturated 0.1 M HCl.



**Fig. S6.** UV-vis absorption spectra of the electrolytes stained with indicator before and after 2 h electrolysis under open circuit conditions.



**Fig. S7.** UV-vis absorption spectra of the electrolyte stained with indicator before and after 2 h electrolysis at the potential of -0.25 V under Ar-saturated solution.



**Fig. S8.** (a) UV–vis absorption spectra of various  $N_2H_4$  concentrations after incubated for 20 min at room temperature. (b) Calibration curve used for calculation of  $N_2H_4$ concentrations. (error bar=SD, n=3).



Fig. S9. UV-vis absorption spectra of  $N_2H_4$  before and after 2 h electrolysis in  $N_2$  atmosphere at different potential.



**Fig. S10.** <sup>1</sup>H NMR spectra (600 M) of standard samples of  ${}^{15}NH_4^+$ , and the electrolyte produced from the NRR reaction using  ${}^{15}N_2$  as the isotopic N<sub>2</sub> source.



Fig. S11. The SEM (a) and TEM (b) patterns for  $MoO_2/FeS_2/GA$  after stability test.

Table S1. Comparison of the  $NH_3$  electrosynthesis activity for  $MoO_2/FeS_2/GA$  with other aqueous-based NRR electrocatalysts at ambient conditions.

| Catalyst                                                        | Electrolyte                           | Potential (V)<br>vs. RHE | NH <sub>3</sub> yield                                                 | FE(%)           | Ref.         |
|-----------------------------------------------------------------|---------------------------------------|--------------------------|-----------------------------------------------------------------------|-----------------|--------------|
| MoO <sub>2</sub> /FeS <sub>2</sub> /GA                          | 0.1 M HCl                             | -0.25 V                  | 40.18 μg h <sup>-1</sup> mg <sup>-1</sup> <sub>cat.</sub>             | 37.44           | This<br>work |
| Fe <sub>2</sub> (MoO <sub>4</sub> ) <sub>3</sub>                | 0.1 M Na <sub>2</sub> SO <sub>4</sub> | -0.6 V                   | 18.16 μg h <sup>-1</sup> mg <sup>-1</sup> <sub>cat.</sub>             | 9.1             | 1            |
| Mo(IV) doped<br>FeS <sub>2</sub>                                | 0.1 M KOH                             | -0.2 V                   | 25.15 μg h <sup>-1</sup> mg <sup>-1</sup> cat.                        | 14.41           | 2            |
| FeS@MoS <sub>2</sub> /CFC                                       | 0.1 M Na <sub>2</sub> SO <sub>4</sub> | -0.5 V                   | $6.34 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$                           | 2.96            | 3            |
| Fe <sub>3</sub> S <sub>4</sub> nanosheets                       | 0.1 M HCl                             | -0.4 V                   | 75.4 $\mu g h^{-1} m g^{-1}_{cat.}$                                   | 6.45            | 4            |
| OVs-MoO <sub>2</sub>                                            | 1.0 M KOH                             | -0.15 V                  | $12.20 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$                          | 8.2             | 5            |
| MoO <sub>3</sub>                                                | 0.1 M HCl                             |                          | 29.43 µg h <sup>-1</sup> mg <sup>-1</sup> <sub>cat.</sub><br>(-0.5 V) | 1.9<br>(-0.3 V) | 6            |
| MoS <sub>2</sub>                                                | 0.1 M Na <sub>2</sub> SO <sub>4</sub> | -0.4 V                   | 29.28 $\mu g h^{-1} m g^{-1}{}_{cat.}$                                | 8.34            | 7            |
| Pd <sub>0.2</sub> Cu <sub>0.8</sub> /rGO                        | 0.1 M KOH                             |                          | 2.8 μg h <sup>-1</sup> mg <sup>-1</sup> <sub>cat.</sub><br>(-0.2 V)   | -<br>(0 V)      | 8            |
| oxygen-doped<br>carbon nanosheet                                | 0.1 M HCl                             | -0.6 V                   | $20.15 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$                          | 4.97            | 9            |
| α-Au/CeO <sub>x</sub> -rGO                                      | 0.1 M HCl                             | -0.2 V                   | 8.3 $\mu$ g h <sup>-1</sup> mg <sup>-1</sup> <sub>cat.</sub>          | 10.1            | 10           |
| Au nanorods                                                     | 0.1 M KOH                             | -0.2 V                   | $6.04 \ \mu g \ h^{-1} \ m g^{-1}_{cat.}$                             | 4.02            | 11           |
| γ-Fe <sub>2</sub> O <sub>3</sub>                                | 0.1 M KOH                             | 0 V                      | $0.21 \ \mu g \ h^{-1} \ m g^{-1}_{cat.}$                             | 1.9             | 12           |
| MnO                                                             | 0.1 M Na <sub>2</sub> SO <sub>4</sub> | -0.39 V                  | $7.92 \ \mu g \ h^{-1} \ mg^{-1}_{cat.}$                              | 8.02            | 13           |
| Nb <sub>2</sub> O <sub>5</sub> nanofiber                        | 0.1 M HCl                             | -0.55 V                  | 43.6 $\mu$ g h <sup>-1</sup> mg <sup>-1</sup> <sub>cat.</sub>         | 9.26            | 14           |
| MnO <sub>2</sub> -Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> | 0.1 M HCl                             | -0.55 V                  | 34.12 $\mu$ g h <sup>-1</sup> mg <sup>-1</sup> <sub>cat.</sub>        | 11.39           | 15           |

| R-WO <sub>3</sub> NSs                                           | 0.1 M HCl                             | -0.3 V | 17.28 $\mu$ g h <sup>-1</sup> mg <sup>-1</sup> <sub>cat.</sub>         | 7                  | 16 |
|-----------------------------------------------------------------|---------------------------------------|--------|------------------------------------------------------------------------|--------------------|----|
| black P nanosheet                                               | 0.01 M HCl                            |        | 31.37 μg h <sup>-1</sup> mg <sup>-1</sup> <sub>cat.</sub><br>(-0.7 V)  | 5.07<br>(-0.6 V)   | 17 |
| TiO <sub>2</sub> /Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> | 0.1 M HCl                             |        | 32.17 μg h <sup>-1</sup> mg <sup>-1</sup> <sub>cat.</sub><br>(-0.55 V) | 16.07<br>(-0.45 V) | 18 |
| β-FeOOH<br>nanorod                                              | 0.5 M LiClO <sub>4</sub>              |        | 23.32 μg h <sup>-1</sup> mg <sup>-1</sup> <sub>cat.</sub><br>(-0.75 V) | 6.7<br>(-0.7 V)    | 19 |
| polymeric carbon<br>nitride                                     | 0.1 M HCl                             | -0.2 V | $8.09 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$                            | 11.59              | 20 |
| Au/TiO <sub>2</sub>                                             | 0.1 M HCl                             | -0.2 V | 21.4 $\mu g \ h^{-1} \ m g^{-1}{}_{cat.}$                              | 8.11               | 21 |
| Au flowers                                                      | 0.1 M HCl                             | -0.2 V | $25.7 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$                            | 6.05               | 22 |
| S-doped carbon<br>nanosphere                                    | 0.1 M Na <sub>2</sub> SO <sub>4</sub> | -0.7 V | 19.07 $\mu$ g h <sup>-1</sup> mg <sup>-1</sup> <sub>cat.</sub>         | 7.47               | 23 |

### References

1. H. Xian, H. Guo, Z. Chen, G. Yu, A. A. Alshehri, K. A. Alzahrani, F. Hao, R. Song and T. Li, *ACS Appl. Mater. Interfaces*, 2020, **12**, 2445-2451.

2. H. Wang, J. Wang, R. Zhang, C. Cheng, K. Qiu, Y. Yang, J. Mao, H. Liu, M. Du, C. Dong and X. Du, *ACS Catal.*, 2020, **10**, 4914-4921.

3. Y. Guo, Z. Yao, B. J. J. Timmer, X. Sheng, L. Fan, Y. Li, F. Zhang and L. Sun, *Nano Energy*, 2019, **62**, 282-288.

4. X. Zhao, X. Lan, D. Yu, H. Fu, Z. Liu and T. Mu, *Chem. Commun.*, 2018, **54**, 13010-13013.

5. G. Zhang, Q. Ji, K. Zhang, Y. Chen, Z. Li, H. Liu, J. Li and J. Qu, *Nano Energy*, 2019, **59**, 10-16.

6. J. Han, X. Ji, X. Ren, G. Cui, L. Li, F. Xie, H. Wang, B. Li and X. Sun, *J. Mater. Chem. A*, 2018, **6**, 12974-12977.

7. X. Li, T. Li, Y. Ma, Q. Wei, W. Qiu, H. Guo, X. Shi, P. Zhang, A. M. Asiri and L. Chen, *Adv. Energy Mater.*, 2018, **8**, 1801357.

8. M. M. Shi, D. Bao, S. J. Li, B. R. Wulan, J. M. Yan and Q. Jiang, *Adv. Energy Mater.*, 2018, **8**, 1800124.

9. H. Huang, L. Xia, R. Cao, Z. Niu, H. Chen, Q. Liu, T. Li, X. Shi, A. M. Asiri and X. Sun, *Chem.-Eur. J.*, 2019, **25**, 1914-1917.

10. S. J. Li, D. Bao, M. M. Shi, B. R. Wulan, J. M. Yan and Q. Jiang, *Adv. Mater.*, 2017, **29**, 1700001.

11. D. Bao, Q. Zhang, F. L. Meng, H. X. Zhong, M. M. Shi, Y. Zhang, J. M. Yan, Q. Jiang and X. B. Zhang, *Adv. Mater.*, 2017, **29**, 1604799.

12. J. Kong, A. Lim, C. Yoon, J. H. Jang, H. C. Ham, J. Han, S. Nam, D. Kim, Y.-E. Sung and J. Choi, *ACS Sustain. Chem. Eng.*, 2017, **5**, 10986-10995.

13. Z. Wang, F. Gong, L. Zhang, R. Wang, L. Ji, Q. Liu, Y. Luo, H. Guo, Y. Li and P. Gao, *Adv. Sci.*, 2019, **6**, 1801182.

14. J. Han, Z. Liu, Y. Ma, G. Cui, F. Xie, F. Wang, Y. Wu, S. Gao, Y. Xu and X. Sun, *Nano Energy*, 2018, **52**, 264-270.

15. W. Kong, F. F. Gong, Q. Zhou, G. Yu, L. Ji, X. Sun, A. M. Asiri, T. Wang, Y. Luo and Y. Xu, *J. Mater. Chem. A*, 2019, **7**, 18823-18827.

16. W. Kong, R. Zhang, X. Zhang, L. Ji, G. Yu, T. Wang, Y. Luo, X. Shi, Y. Xu and X. Sun, *Nanoscale*, 2019, **11**, 19274-19277.

17. L. Zhang, L. X. Ding, G. F. Chen, X. Yang and H. Wang, *Angew. Chem.-Int. Edit.*, 2019, **131**, 2638-2642.

18. Y. Fang, Z. Liu, J. Han, Z. Jin, Y. Han, F. Wang, Y. Niu, Y. Wu and Y. Xu, *Adv. Energy Mater.*, 2019, **9**, 1803406.

19. X. Zhu, Z. Liu, Q. Liu, Y. Luo, X. Shi, A. M. Asiri, Y. Wu and X. Sun, *Chem. Commun.*, 2018, **54**, 11332-11335.

20. C. Lv, Y. Qian, C. Yan, Y. Ding, Y. Liu, G. Chen and G. Yu, *Angew. Chem.-Int. Edit.*, 2018, **57**, 10246-10250.

21. M. M. Shi, D. Bao, B. R. Wulan, Y. H. Li, Y. F. Zhang, J. M. Yan and Q. Jiang, *Adv. Mater.*, 2017, **29**, 1606550.

22. Z. Wang, Y. Li, H. Yu, Y. Xu, H. Xue, X. Li, H. Wang and L. Wang, *ChemSusChem*, 2018, **11**, 3480-3485.

23. L. Xia, X. Wu, Y. Wang, Z. Niu, Q. Liu, T. Li, X. Shi, A. M. Asiri and X. Sun, *Small Methods*, 2019, **3**, 1800251.