Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Highly H₂O Permeable Ionic Liquid Encapsulated Metal-Organic Framework

Membranes for Energy-efficient Air-Dehumidification

Sunghwan Park^a and Hae-Kwon Jeong*,^{a,b}

^a Artie McFerrin Department of Chemical Engineering and ^b Department of Materials Science and Engineering, Texas A&M University, 3122 TAMU, College Station, TX 77843-3122, United States

* Corresponding author:

H.-K. Jeong (E-mail address: hjeong7@tamu.edu, Phone: +1-979-862-4850, Fax: +1-979-845-6446)

Fig. S1. (a) Schematic diagram of permeation measurement system and (b) design of the membrane test cell.

Fig. S2. Structure of $[C_4MIM][Br]$ with an isosurface created by using the Connolly surface method.

Fig. S3. Illustration of the octahedral cage of UiO-66-NH $_2$ and the indication of (111) orientation.

Fig. S4. TGA thermograms of a UiO-66-NH₂ membrane and an IL@UiO-66-NH₂ membrane along with a $[C_4MIM][Br]$ sample under air flow.

Fig. S5. TGA thermograms of IL@UiO-66-NH $_2$ membrane and powder samples.

Fig. S6. SEM image of UiO-66-NH $_2$ particles.

Fig. S7. N_2 adsorption/desorption isotherms at 77 K.

Fig. S8. ¹H NMR spectra of samples dissolved in H_2SO_4 and DMF (1:9, vol) mixture.

Fig. S9. Illustration of cages of UiO-66-NH $_2$ unit cell.

Table S1. Heat of sorption (i.e., sorption enthalpy) of water vapor at 1.1 kPa.

UiO-66-NH ₂	IL@UiO-66-NH ₂	[C ₄ MIM][Br]
-51.76 ± 1.42 kJ mol ⁻¹	-54.13 ± 0.85 kJ mol ⁻¹	-40.01 ± 11.30 kJ mol ⁻¹

Table S2. Effective diffusivity (D_{eff}) of water vapor at 293 K and p/p_o = 0.5.

UiO-66-NH ₂	IL@UiO-66-NH ₂	[C₄MIM][Br]	
4.85 ± 0.09 x 10 ⁻¹¹ cm ² sec ⁻¹	5.98 ± 0.05 x 10 ⁻¹¹ cm ² sec ⁻¹	1.77 ± 0.63 x 10 ⁻⁷ cm ² sec ⁻¹	

Diffusion in spherical particle (unipore model)

In the case of UiO-66-NH₂ and IL@UiO-66-NH₂, the fractional uptake of adsorbate diffusing in or out a spherical particle at time t is given as follows;¹

$$\frac{M_t}{M_{\infty}} = 1 - \frac{6}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} e^{\left(-\frac{D_{eff} n^2 \pi^2 t}{R^2}\right)}.$$
 (S1)

Where M_t (mmol) and M_{∞} (mmol) are moles of adsorbed gas phase molecules at time t and at equilibrium, respectively, and D_{eff} (cm²/s) is the effective diffusivity, and R (cm) is the radius of particle. In the short time region ($M_t/M_{\infty} < 0.5$), the kinetic adsorption is essentially linear and Equation S1 can be simplified by ²

$$\frac{M_t}{M_{\infty}} \approx \frac{6}{\sqrt{\pi}} \sqrt{\frac{D_{eff}}{R^2}} t . \quad (S2)$$

Diffusion in plane liquid

In case of $[C_4MIM][Br]$, the relative amount of gas uptake diffusing into a plane liquid at time *t* is expressed by follows;¹

$$\frac{M_t}{M_{\infty}} = 1 - \frac{8}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{(2n+1)^2} e^{\left(-\frac{D_{eff}(2n+1)^2 \pi^2 t}{4L^2}\right)}.$$
 (S3)

Where L (cm) is the half thickness of plane. For the short time region ($M_t/M_{\infty} < 0.5$), Equation S3 is approximated by³

$$\frac{M_t}{M_{\infty}} \approx \frac{2}{\sqrt{\pi}} \sqrt{\frac{D_{eff}}{L^2}} t . \quad (S4)$$

Fig. S10. Kinetics of water vapor adsorption at 295 K and 50% RH for overall dosing.

Sample	Tempe rature	Thickness (µm)	H ₂ O permeance (mol m ⁻² s ⁻¹ Pa ⁻¹)	H ₂ O permeability	H ₂ O/N ₂ separation	Ref.
	(°C)	U. I		(Barrer)	factor	
PEO-PBT	30	30	9.57 x 10 ⁻⁷	85500	40500	4
PAN	30	12.7	7.9 x 10 ⁻⁹	300	1875000	5
PEBAX®1074	30	78	8.58 x 10 ⁻⁷	200000	104167	- 6
SPEEK	30	51	3.22 x 10 ⁻⁶	490000	350000	
TMSC	23	1.2	1.34 x 10 ⁻⁶	4808	11000	7
PVA/LiC/TiO ₂	24	n/a	4.57 x 10 ⁻⁷	n/a	450	
PVA/TiO ₂	24	n/a	5.11 x 10 ⁻⁷	n/a	5781	ŏ
PVA/LiCl	24	180	5.58 x 10 ⁻⁷	300000	2800	9
Pebax@1657/GO	21	5.7	1.68 x 10 ⁻⁶	28632	80000	10
PSf/Si-TFN	30	0.4	7.37 x 10 ⁻⁷	881	501	11
PSf/D ^{1.0} T ^{0.2} cTiO ₂ ^{0.2}	30	0.226	4.49 x 10 ⁻⁷	303	486	12
ABn-NH-TFN	30	0.31	9.41 x 10 ⁻⁷	872	913	13
PBI/TiO2	22	20	1.19 x 10 ⁻⁶	71000	3100000	14
PA/GT	30	n/a	9.45 x 10 ⁻⁷	n/a	910	15
Zeolite NaA	32	2	6.8 x 10 ⁻⁶	40664	178	16
GO	30.8	6	1.01 x 10 ⁻⁵	182000	10000	17
GLX-cross-linked GO		1.64	1.68 x 10 ⁻⁵	82380	2800000	18
[C ₂ MIM][Tf ₂ N]	31	132	2.1 x 10 ⁻⁷	82883	3843	
[C ₂ MIM][BF ₄]	31	132	3.5 x 10 ⁻⁷	138138	16300	19
[N ₄₁₁₁][Tf ₂ N]	31	132	1.9 x 10 ⁻⁷	74989	3290	
TEG	30	47	5.7 x 10 ⁻⁸	8010	2500	20
PEG-400	22	67	5 x 10 ⁻⁸	10017	2000	20
[C ₂ MIM][DCA]	25	11.5	1.6 x 10 ⁻⁶	55016	> 1000	
[C ₂ MIM][ESU]	25	10.3	1.5 x 10 ⁻⁶	46196	> 1000	21
[C ₂ MIM][BF ₄]	25	9.9	1.2 x 10 ⁻⁶	35521	> 1000	
TEG	25	12.8	7.2 x 10 ⁻⁷	27556	> 1000	
	22	22 ~ 2	6.10 ± 1.52 x 10 ⁻⁵	440000 ±	312 ± 68	
UIO-66-NH ₂	22			120000		
	22 ~ 2	~ ว	$236 \pm 0.59 \times 10^{-4}$	1580000 ±	1564 + 219	This
	~~~	2	2.30 ± 0.39 X 10 °	110000	1304 1 210	work
[C ₄ MIM][Br]	22 ~ 58	~ 50		270000 ±	4206 J 1102	
		50	1.57 ± 0.50 × 10 *	90000	+200 ± 1102	

Table S3. Comparison of  $H_2O/N_2$  separation performances.



Fig. S11. H₂O/N₂ separation performances of samples under various feed pressure at 22 °C.



Fig. S12.  $H_2O/N_2$  separation performances of samples under various temperatures at 1.5 bar of feed pressure.

### References

1. Crank, J., *The mathematics of diffusion*. Oxford university press: 1979.

2. Aristov, Y. I.; Glaznev, I. S.; Freni, A.; Restuccia, G., Kinetics of water sorption on a CaCl2-insilica-gel-pores sorbent: The effects of the pellet size and temperature. *Kinet Catal* + **2006**, *47* (5), 770-775.

3. Vergnaud, J.-M., *Controlled drug release of oral dosage forms*. CRC Press: 1993.

4. Metz, S. J.; van de Ven, W. J. C.; Potreck, J.; Mulder, M. H. V.; Wessling, M., Transport of water vapor and inert gas mixtures through highly selective and highly permeable polymer membranes. *J Membr Sci* **2005**, *251* (1-2), 29-41.

5. Allen, S. M.; Fujii, M.; Stannett, V.; Hopfenberg, H. B.; Williams, J. L., The barrier properties of polyacrylonitrile. *J Membr Sci* **1977**, *2*, 153-163.

6. Sijbesma, H.; Nymeijer, K.; van Marwijk, R.; Heijboer, R.; Potreck, J.; Wessling, M., Flue gas dehydration using polymer membranes. *J Membr Sci* **2008**, *313* (1-2), 263-276.

7. Puspasari, T.; Akhtar, F. H.; Ogieglo, W.; Alharbi, O.; Peinemann, K. V., High dehumidification performance of amorphous cellulose composite membranes prepared from trimethylsilyl cellulose. *J Mater Chem A* **2018**, *6* (19), 9271-9279.

8. Bui, T. D.; Chen, F.; Nida, A.; Chua, K. J.; Ng, K. C., Experimental and modeling analysis of membrane-based air dehumidification. *Sep Purif Technol* **2015**, *144*, 114-122.

9. Bui, D. T.; Nida, A.; Ng, K. C.; Chua, K. J., Water vapor permeation and dehumidification performance of poly (vinyl alcohol)/lithium chloride composite membranes. *J Membr Sci* **2016**, *498*, 254-262.

10. Akhtar, F. H.; Kumar, M.; Peinemann, K.-V., Pebax®1657/Graphene oxide composite membranes for improved water vapor separation. *J Membr Sci* **2017**, *525*, 187-194.

11. Baig, M. I.; Ingole, P. G.; Choi, W. K.; Jeon, J. D.; Jang, B.; Moon, J. H.; Lee, H. K., Synthesis and characterization of thin film nanocomposite membranes incorporated with surface functionalized Silicon nanoparticles for improved water vapor permeation performance. *Chem Eng J* **2017**, *308*, 27-39.

12. Baig, M. I.; Ingole, P. G.; Choi, W. K.; Park, S. R.; Kang, E. C.; Lee, H. K., Development of carboxylated TiO2 incorporated thin film nanocomposite hollow fiber membranes for flue gas dehydration. *J Membr Sci* **2016**, *514*, 622-635.

13. Ingole, P. G.; Pawar, R. R.; Baig, M. I.; Jeon, J. D.; Lee, H. K., Thin film nanocomposite (TFN) hollow fiber membranes incorporated with functionalized acid-activated bentonite (ABn-NH) clay: towards enhancement of water vapor permeance and selectivity. *J Mater Chem A* **2017**, *5* (39), 20947-20958.

14. Akhtar, F. H.; Kumar, M.; Villalobos, L. F.; Vovusha, H.; Shevate, R.; Schwingenschlogl, U.; Peinemann, K. V., Polybenzimidazole-based mixed membranes with exceptionally high water vapor permeability and selectivity. *J Mater Chem A* **2017**, *5* (41), 21807-21819.

15. Baig, M. I.; Ingole, P. G.; Jeon, J.-d.; Hong, S. U.; Choi, W. K.; Lee, H. K., Water vapor transport properties of interfacially polymerized thin film nanocomposite membranes modified with

graphene oxide and GO-TiO2 nanofillers. Chem Eng J 2019, 373, 1190-1202.

16. Xing, R.; Rao, Y. X.; TeGrotenhuis, W.; Canfield, N.; Zheng, F.; Winiarski, D. W.; Liu, W., Advanced thin zeolite/metal flat sheet membrane for energy efficient air dehumidification and conditioning. *Chem Eng Sci* **2013**, *104*, 596-609.

17. Shin, Y.; Liu, W.; Schwenzer, B.; Manandhar, S.; Chase-Woods, D.; Engelhard, M. H.; Devanathan, R.; Fifield, L. S.; Bennett, W. D.; Ginovska, B.; Gotthold, D. W., Graphene oxide membranes with high permeability and selectivity for dehumidification of air. *Carbon* **2016**, *106*, 164-170.

18. Hung, W. S.; Lai, Y. L.; Lee, P. H.; Chiao, Y. H.; Sengupta, A.; Sivakumar, M.; Lee, K. R.; Lai, J. Y., Tuneable interlayer spacing self-assembling on graphene oxide-framework membrane for enhance air dehumidification. *Sep Purif Technol* **2020**, *239*, 116499-116506.

19. Scovazzo, P., Testing and evaluation of room temperature ionic liquid (RTIL) membranes for gas dehumidification. *J Membr Sci* **2010**, *355* (1-2), 7-17.

20. Ito, A., Dehumidification of air by a hygroscopic liquid membrane supported on surface of a hydrophobic microporous membrane. *J Membr Sci* **2000**, *175* (1), 35-42.

21. Kudasheva, A.; Kamiya, T.; Hirota, Y.; Ito, A., Dehumidification of air using liquid membranes with ionic liquids. *J Membr Sci* **2016**, *499*, 379-385.