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Scheme S1. Chemical synthesis route for preparing MQDs samples. The inset pictures 

demonstrate the aqueous solution of MQDs which the concentrations are around 10 mg 

ml-1
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Figure S1. XRD patterns of reactants. (a) Nickel citrate hydrate, (b) Zinc citrate tribasic 

hydrate

Figure S2. Graphitization degree tests of GCFs samples and commercial MCMB

Figure S3. N2 absorption/desorption isotherms and the pores size distribution of C-

ACs, the inset image are assigned to the pores size below 10 nm



Figure S4. XPS full survey of different samples. (a) MQDs-1, (b) MQDs-3, (c) MQDs-

5, (d) GCFs-1, (e) GCFs-3, (f) Z-ACs. 

It can be seen from in Figure S4 that elements of C, N, O, Ni and Zn exist in MQDs-3. 

However, only C, N, O, Ni and C, N, O, Zn can be found in MQDs-1 and MQDs-5, 

respectively. After heat treatment and acid washing, only C, N, O maintain in the final 

products.

Figure S5. High resolution XPS peaks of GCFs-1, GCFs-3 and Z- ACs



Figure S6. (a-f) SEM and the following EDS mapping of MQDs-3, (g-k) SEM and 

the following EDS mapping of MQDs-5

Figure S7. (a-c) SEM images and (d-f) the following EDS mapping of GCFs-3, (g-i) 

SEM images and (j-l) the following EDS mapping of Z-ACs



Figure S8. Morphological information of MQDs-1 and its derivatives. (a-b) TEM and 

HR-TEM images of MQDs-1, (c-d) SEM and the following elements distribution of 

MQDs-1, (e-f) TEM and HR-TEM images of GCFs-1

Figure S9. SEM images and the following EDS mapping results of GCFs-1

Figure S10. CV curves of GCFs-1 to GCFs-4 and Z-ACs



Figure S11. Rate capability of GCFs in Li-half cells.

Figure S12. Cycling performance at 0.1 A g-1 of MQDs derivatives.



Figure S13. Capacitive contribution behavior analysis (a-a3) GCFs-1, (b-b3) GCFs-2, 

(c-c3) GCFs-3, (d-d3) GCFs-4, (e-e3) Z-ACs

Figure S14. CV curves of Z-ACs and C-ACs



Figure S15. Cycling performance of Z-ACs at 1.0 and 5.0 A g-1

Figure S16. Cycling performance of GCFs-3//Z-ACs LICs at different current densities

Table S1. Basic parameters for preparing MQDs and final samples

Reactants (mmol)
Final 

products
Nickel 

Citrate

Zinc 

Citrate
Urea

Precursors

Metal-

contained

intermediates

GCFs-1 10.0 — 120 MQDs-1 MGs-1

GCFs-2 7.5 2.5 120 MQDs-2 MGs-2

GCFs-3 5.0 5.0 120 MQDs-3 MGs-3

GCFs-4 2.5 7.5 120 MQDs-4 MGs-4

Z-ACs — 10.0 120 MQDs-5 MGs-5

Table S2. Physical parameters of MQDs derivatives and their comparisons with 



commercial products

ID/IG SBET Vt Pores size G

— m2 g-1 cm3 g-1 nm %

GCFs-1 0.37 11.40 0.038 13.48 95.58

GCFs-2 0.66 9.38 0.042 17.70 93.02

GCFs-3 0.41 234.61 0.315 5.37 94.42

GCFs-4 0.73 496.78 0.705 5.67 89.07

Z-ACs 1.81 1522.09 1.047 2.75 —

C-ACs — 1288.36 0.741 2.30 —

MCMB — — — — 85.12

where SBET is corresponding to the specific surface area calculated by the N2 

absorption/desorption isotherms, Vt means the total pores volume, G is equal to the 

value of graphitization degree.

Table S3. Elements content analysis calculated by XPS

C N O Ni Zn

Atomic ratio (%)

MQDs-1 50.04 8.07 35.85 6.04 —

MQDs-3 44.34 6.24 39.19 4.23 6.01

MQDs-5 46.03 4.68 38.19 — 11.10

GCFs-1 91.91 — 8.09 — —

GCFs-3 94.71 0.22 5.07 — —

Z-ACs 85.03 0.65 14.31 — —



Table S4. Electrochemical performance comparisons of GCFs-3//Z-ACs LICs with recent published articles

Anode Cathode
Voltage/

V
Electrochemical performance References

GCFs-3 Z-ACs 2.0-4.0 60.3 Wh kg-1 at 19.8 kW kg-1, 98.1% after 20000 cycles at 5.0 A g-1 This work
PGCs AC 2.0-4.0 44.2 Wh kg-1 at 6.527 kW kg-1, 97.3% after 10000 cycles at 5.0 A g–1 1

LTO/Graphene AC 1.5-3.0 12.8 Wh kg-1 at 57.6 kW kg-1, 97% after 2000 cycles at 25.0 A g–1 2

GNS AC 2.0-4.0 10.9 Wh kg-1 at 19.62 kW kg-1, 96.5% after 5000 cycles at 5.0 A g–1 3

MnNCN AC 0.1-4.0
~10 Wh kg-1 at 8.5 kW kg-1, no degradation after 5000 cycles at 5.0 A g–

1
4

GC1000
SFAC-

2
2.0-4.0 32 Wh kg-1 at 6.63 kW kg-1, 96.5% after 3000 cycles at 1.0 A g–1 5

PGCNs AC 2.0-4.0 24.5 Wh kg-1 at 14.09 kW kg-1, 89.5% after 40000 cycles at 5.0 A g–1 6

cNiCo2O4
VACN

F
1.0-4.2 26.44 Wh kg-1 at 40 kW kg-1, 90% after 9000 cycles at 4.0 A g–1 7

FeS2/C AC 0.0-3.2 5 Wh kg-1 at 4 kW kg-1, keep stable after 2500 cycles at 3.24 kW kg-1 8

CAC NMNC 0.0-3.0 63 Wh kg-1 at 6.6 kW kg-1, 98% after 10000 cycles 9

CO-CS AC 2.0-4.3 ~32 Wh kg-1 at ~7.9 kW kg-1, ~81% after 10000 cycles at 1.5 A g–1 10

Nb2O5 AC 1.0-3.5 65.39 Wh kg-1 at 5.35 kW kg-1, without cycling data 11

MnO/C CNS 1.0-4.0 30 Wh kg-1 at 20 kW kg-1, 70% after 5000 cycles 12

VO-CF AC 2.0-4.3 ~32 Wh kg-1 at 7.9 kW kg-1, 67% after 10000 cycles at 1.5 A g–1 13

MoO2−CNT YP80 0.0-3.0 34 Wh kg-1 at 4 kW kg-1, 75% after 1000 cycles at 1.5 A g–1 14

TiO2@PCNFs AC 0.0-3.0 27.5 Wh kg-1 at 5.0 kW kg-1, 80.5% after 10000 cycles at 10 A g–1 15

Ti3C2Tx/CNT AC 1.0-4.0 19 Wh kg-1 at 5.8 kW kg-1, 81.3% after 5000 cycles at 2.0 A g–1 16

Graphite BNC 1.0-4.0 53.6 Wh kg-1 at 10 kW kg-1, 76.3% after 2000 cycles at 1.25 kW kg-1 17



CNF@CoNi2S4 AC 1.0-4.0 35 Wh kg-1 at 15 kW kg-1, 96% after 5000 cycles at 2.0 A g–1 18

BiVO4 PRGO 0.0-4.0 42 Wh kg-1 at 3.86 kW kg-1, 81% after 6000 cycles at 0.9 A g–1 19

Fe2O3@C N-HPC 1.0-4.0 31 Wh kg-1 at 9.2 kW kg-1, 84.1% after 1000 cycles at 1.0 A g–1 20
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