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Scheme S1. Chemical synthesis route for preparing MQDs samples. The inset pictures
demonstrate the aqueous solution of MQDs which the concentrations are around 10 mg

ml-!
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Figure S1. XRD patterns of reactants. (a) Nickel citrate hydrate, (b) Zinc citrate tribasic

hydrate
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Figure S2. Graphitization degree tests of GCFs samples and commercial MCMB
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Figure S3. N, absorption/desorption isotherms and the pores size distribution of C-

ACs, the inset image are assigned to the pores size below 10 nm
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Figure S4. XPS full survey of different samples. (a) MQDs-1, (b) MQDs-3, (c) MQDs-
5, (d) GCFs-1, (e) GCFs-3, (f) Z-ACs.

It can be seen from in Figure S4 that elements of C, N, O, Ni and Zn exist in MQDs-3.
However, only C, N, O, Ni and C, N, O, Zn can be found in MQDs-1 and MQDs-5,
respectively. After heat treatment and acid washing, only C, N, O maintain in the final

products.
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Figure SS. High resolution XPS peaks of GCFs-1, GCFs-3 and Z- ACs



Figure S6. (a-f) SEM and the following EDS mapping of MQDs-3, (g-k) SEM and
the following EDS mapping of MQDs-5

P

Figure S7. (a-c) SEM images and (d-f) the following EDS mapping of GCFs-3, (g-1)
SEM images and (j-1) the following EDS mapping of Z-ACs



100 nm

Figure S8. Morphological information of MQDs-1 and its derivatives. (a-b) TEM and
HR-TEM images of MQDs-1, (c-d) SEM and the following elements distribution of
MQDs-1, (e-f) TEM and HR-TEM images of GCFs-1
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Figure S9. SEM images and the following EDS mapping results of GCFs-1
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Figure S10. CV curves of GCFs-1 to GCFs-4 and Z-ACs
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Figure S11. Rate capability of GCFs in Li-half cells.
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Figure S12. Cycling performance at 0.1 A g-' of MQDs derivatives.
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Figure S13. Capacitive contribution behavior analysis (a-a3) GCFs-1, (b-b3) GCFs-2,

(c-c3) GCFs-3, (d-d3) GCFs-4, (e-e3) Z-ACs
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Figure S14. CV curves of Z-ACs and C-ACs
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Figure S15. Cycling performance of Z-ACs at 1.0 and 5.0 A g*!
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Figure S16. Cycling performance of GCFs-3//Z-ACs LICs at different current densities

Table S1. Basic parameters for preparing MQDs and final samples

Reactants (mmol) Metal-
Final
Nickel Zinc Precursors contained
products Urea
Citrate Citrate intermediates
GCFs-1 10.0 — 120 MQDs-1 MGs-1
GCFs-2 7.5 2.5 120 MQDs-2 MGs-2
GCFs-3 5.0 5.0 120 MQDs-3 MGs-3
GCFs-4 2.5 7.5 120 MQDs-4 MGs-4
Z-ACs — 10.0 120 MQDs-5 MGs-5

Table S2. Physical parameters of MQDs derivatives and their comparisons with



commercial products

In/Ig SBET Vi Pores size G
— m? gl cm’ g! nm %
GCFs-1 0.37 11.40 0.038 13.48 95.58
GCFs-2 0.66 9.38 0.042 17.70 93.02
GCFs-3 0.41 234.61 0.315 5.37 94.42
GCFs-4 0.73 496.78 0.705 5.67 89.07
Z-ACs 1.81 1522.09 1.047 2.75 —
C-ACs — 1288.36 0.741 2.30 —
MCMB — — — — 85.12

where Sggr is corresponding to the specific surface area calculated by the N,
absorption/desorption isotherms, V means the total pores volume, G is equal to the

value of graphitization degree.

Table S3. Elements content analysis calculated by XPS

C N O Ni 7/n

Atomic ratio (%)

MQDs-1 50.04 8.07 35.85 6.04 —
MQDs-3 44.34 6.24 39.19 4.23 6.01
MQDs-5 46.03 4.68 38.19 — 11.10
GCFs-1 91.91 — 8.09 — —
GCFs-3 94.71 0.22 5.07 — —

Z-ACs 85.03 0.65 14.31 — —




Table S4. Electrochemical performance comparisons of GCFs-3//Z-ACs LICs with recent published articles

Voltage/ )
Anode Cathode v Electrochemical performance References
GCFs-3 Z-ACs  2.0-4.0 60.3 Wh kg! at 19.8 kW kg-!, 98.1% after 20000 cycles at 5.0 A g’! This work
PGCs AC 2.0-4.0 44.2 Wh kg at 6.527 kW kg1, 97.3% after 10000 cycles at 5.0 A g! !
LTO/Graphene AC 1.5-3.0 12.8 Wh kg! at 57.6 kW kg!, 97% after 2000 cycles at 25.0 A g™! 2
GNS AC 2.0-4.0 10.9 Wh kg! at 19.62 kW kg-!, 96.5% after 5000 cycles at 5.0 A g! 3
~10 Wh kg! at 8.5 kW kg, no degradation after 5000 cycles at 5.0 A g~
MnNCN AC 0.1-4.0 | 4
SFAC-
GC1000 5 2.0-4.0 32 Whkg! at 6.63 kW kg'!, 96.5% after 3000 cycles at 1.0 A g! 3
PGCNs AC 2.0-4.0 24.5 Wh kg! at 14.09 kW kg™!, 89.5% after 40000 cycles at 5.0 A g! 6
VACN
cNiCo0,04 F 1.0-4.2 26.44 Wh kg! at 40 kW kg!, 90% after 9000 cycles at 4.0 A g! 7
FeS,/C AC 0.0-3.2 5 Whkg! at 4 kW kg!, keep stable after 2500 cycles at 3.24 kW kg-! 8
CAC NMNC  0.0-3.0 63 Wh kg'! at 6.6 kW kg, 98% after 10000 cycles 0
CO-CS AC 2.0-4.3 ~32 Wh kg'! at ~7.9 kW kg1, ~81% after 10000 cycles at 1.5 A g! 10
Nb,0s AC 1.0-3.5 65.39 Wh kg at 5.35 kW kg'!, without cycling data 1
MnO/C CNS 1.0-4.0 30 Whkg! at 20 kW kg!, 70% after 5000 cycles 12
VO-CF AC 2.0-4.3 ~32 Wh kg at 7.9 kW kg!, 67% after 10000 cycles at 1.5 A g! 13
MoO,—CNT YP8O0 0.0-3.0 34 Wh kg! at 4 kW kg!, 75% after 1000 cycles at 1.5 A g™! 14
TiO2@PCNFs AC 0.0-3.0 27.5 Whkg!at 5.0 kW kg!, 80.5% after 10000 cycles at 10 A g~! 15
Ti;C,T,/CNT AC 1.0-4.0 19 Wh kg'! at 5.8 kW kg-!, 81.3% after 5000 cycles at 2.0 A g! 16

Graphite BNC 1.0-4.0 53.6 Wh kg'! at 10 kW kg1, 76.3% after 2000 cycles at 1.25 kW kg! 17



CNF@CONIQS4
BiVO,
F6203@C

AC
PRGO
N-HPC

1.0-4.0
0.0-4.0
1.0-4.0

35 Whkg!at 15 kW kg!, 96% after 5000 cycles at 2.0 A g!
42 Wh kg at 3.86 kW kg!, 81% after 6000 cycles at 0.9 A g!
31 Wh kg at 9.2 kW kg'!, 84.1% after 1000 cycles at 1.0 A g~
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