Supporting Information

Z-scheme 2D/3D hierarchical MoS₂@CoMoS₄ flower-shaped arrays

with enhanced full spectrum light photoelectrocatalytic activity for

H₂O₂/*p*-aminophenol production and contaminants degradation

Ao Zhang, Lijun Yang, Lei Zhang*

College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang,

Liaoning, 110036, People's Republic of China

^{*} Corresponding author. Tel.: +86 24 62207809; Fax: +86 24 62202380. *E-mail address:*zhanglei63@126.com(L. Zhang).

SEM of pure MoS₂nanosheets:

Fig. S1.SEM image of MoS_2 nanosheets.

Bias potential optimization curve

Fig. S2 showed the effect of photo-cathodic bias potential (-0.4 to -0.8 V vs SCE) on H₂O₂ production using the MoS₂@CoMoS₄ photo-cathode. It can be seen that the H₂O₂ yields increased when the cathodic bias potential decreased from -0.4 V to -0.5V. When the cathodic bias potential exceeded -0.5 V, the H₂O₂ yield declined. The increase of cathodic bias potential can enhance the electron transfer photogenerated on the MoS₂@CoMoS₄ photo-cathode, which can further promote the H₂O₂ production. When the photo-cathodic bias potential became more negative than -0.5V, hydrogen evolution reaction could appear and become more remarkable on the photo-cathode, which inhibited the accumulation of H₂O₂. Therefore, -0.5V is the best bias potential in this experiment.

Fig. S2. The effects of applied potentials (vs. SCE) on the yields of H₂O₂ over MoS₂@CoMoS₄.

MoS₂ modifying dosages optimization curve

The addition amount of MoS_2 was 0.037 g, 0.075 g, 0.112 g, 0.149 g and 0.186g, respectively. When the addition amount of MoS_2 was 0.149 g, the catalytic production of H_2O_2 reached the maximum, which was chose as the optimal MoS_2 addition amount.

Fig. S3. The effect of MoS₂ modifying dosages on the yields of H₂O₂ over MoS₂@CoMoS₄.

The HPLC chromatogramsof pure *p*-NP and *p*-AP.

Fig. S4. HPLC chromatograms of *p*-NP standard (a) and *p*-AP standard (b) under the same conditions.