Supporting Information

Essential Effect of the Electrolyte on the Mechanical and Chemical Degradation of LiNi_{0.8}Co_{0.15}Al_{0.05}O₂ Cathodes upon Long-Term Cycling

Xiaoming Liu,^{1,#} Xiaowen Zhan,^{1,2,#} Zachary D. Hood,^{3,#} Wangda Li,⁴ Donovan N. Leonard⁵,

Arumugam Manthiram,⁴ Miaofang Chi^{1,*}

¹ Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

² Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA

³ Applied Materials Division, Argonne National Laboratory, Lemont, IL, 60439, USA

⁴ Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA

⁵ Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

[#] Equal contribution

* Correspondence to: <u>chim@ornl.gov</u>

Supplementary Figures:

Figure S1. (a-b) HAADF-STEM images acquired at some loosely contacted grains in the pristine NCA secondary particle shown in Figure 1a. The inset of panel b shows Ni L-edge EELS spectra obtained at the two points indicated.

Figure S2. (a-c) SEM images of the cross-section in a secondary NCA particle after long-term cycling.

Figure S3. Integration of the O-*K* edge between 520 and 570 eV at surface (red shadow) and bulk (blue shadow) after the spectra were normalized to the total intensity of signal between 510-950eV.

Figure S4. HAADF-STEM images and EELS spectra of cycled NCA. (a) A void in the center of the secondary particle. (b) A close examination of the circled area in panel a. (e-d) High-resolution STEM images and FFT patterns of the highlighted points in panel b. EELS spectra of Ni *L*-edge (e), Co *L*-edge (f), and O *K*-edge (g) at the bulk (B) and reconstruction layer (A) of the particle near the void.